• Title/Summary/Keyword: causal lift

Search Result 4, Processing Time 0.017 seconds

Proposition of causal association rule thresholds (인과적 연관성 규칙 평가 기준의 제안)

  • Park, Hee Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1189-1197
    • /
    • 2013
  • Data mining is the process of analyzing a huge database from different perspectives and summarizing it into useful information. One of the well-studied problems in data mining is association rule generation. Association rule mining finds the relationship among several items in massive volume database using the interestingness measures such as support, confidence, lift, etc. Typical applications for this technique include retail market basket analysis, item recommendation systems, cross-selling, customer relationship management, etc. But these interestingness measures cannot be used to establish a causality relationship between antecedent and consequent item sets. This paper propose causal association thresholds to compensate for this problem, and then check the three conditions of interestingness measures. The comparative studies with basic and causal association thresholds are shown by numerical example. The results show that causal association thresholds are better than basic association thresholds.

Proposition of causally confirmed measures in association rule mining (인과적 확인 측도에 의한 연관성 규칙 탐색)

  • Park, Hee Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.4
    • /
    • pp.857-868
    • /
    • 2014
  • Data mining is the representative analysis methodology in the era of big data, and is the process to analyze a massive volume database and summarize it into meaningful information. Association rule technique finds the relationship among several items in huge database using the interestingness measures such as support, confidence, lift, etc. But these interestingness measures cannot be used to establish a causality relationship between antecedent and consequent item sets. Moreover, we can not know association direction by them. This paper propose causally confirmed association thresholds to compensate for these problems, and then check the three conditions of interestingness measures. The comparative studies with basic association thresholds, causal association thresholds, and causally confirmed association thresholds are shown by simulation studies. The results show that causally confirmed association thresholds are better than basic and causal association thresholds.

Interrelationship Analysis between Causal Factors of Construction Defect Using Association Rule Mining

  • Lee, Sang-Deok;Han, Sang-Won;Hyun, Chang-Taek
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.627-628
    • /
    • 2015
  • Construction defect which can causes economic damage such as schedule delay, cost overrun is a considerably important factor in construction industry. In general, a construction defect features a difficulty to find out causes precisely because it occurs when several interrelated causes combine. Yet, studies have tried to understand the interrelationships between factors are limited. In addition, despite of a tremendous amount of construction data, it's not still enough to analyze them, but tends to depend on experience or know-how of practitioners. Thus, it is necessary to identify underlying causes in influential factors by utilizing related data. This paper analyses Interrelationships between causal factors using Association Rule Mining to discover root causes of construction defects. Confidence and Lift that can be used for presenting the interrelationships of the causes were extracted from 1241 cases in 30 projects in Korea. It is expected that this paper allows the construction managers to discover key factors and make right decisions to reduce occurrence of construction defects. Furthermore, analysis of interrelationships can improve understanding of structural patterns of construction defects.

  • PDF

Comparison of confidence measures useful for classification model building (분류 모형 구축에 유용한 신뢰도 측도 간의 비교)

  • Park, Hee Chang
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.2
    • /
    • pp.365-371
    • /
    • 2014
  • Association rule of the well-studied techniques in data mining is the exploratory data analysis for understanding the relevance among the items in a huge database. This method has been used to find the relationship between each set of items based on the interestingness measures such as support, confidence, lift, similarity measures, etc. By typical association rule technique, we generate association rule that satisfy minimum support and confidence values. Support and confidence are the most frequently used, but they have the drawback that they can not determine the direction of the association because they have always positive values. In this paper, we compared support, basic confidence, and three kinds of confidence measures useful for classification model building to overcome this problem. The result confirmed that the causal confirmed confidence was the best confidence in view of the association mining because it showed more precisely the direction of association.