• Title/Summary/Keyword: cation form

Search Result 132, Processing Time 0.024 seconds

Crystallographic Studies of $Ag^+$-and $Ca^{2+}$- Exchanged Zeolite A Reacting with Rubidium Vapor (루비듐 증기와 반응한 $Ag^+$ 이온과 $Ca^{2+}$ 이온으로 치환된 제올라이트 A의 결정학적 연구)

  • Han, Young-Wook;Song, Seong-Hwan;Kim, Yang
    • Journal of the Mineralogical Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.22-31
    • /
    • 1991
  • Three crystal structures of dehydrated $Ag^+$-and $Ca^{2+}$- exchanged zeolite $A(Ag_4Ca_4-A,\;Ag_^Ca_3-A,\;and\;Ag_8Ca_2-A)$ treated at 250${\circ}C$ with 0.1 Torr of Rb vapor have been determined by single-crystal x-ray diffraction techniques in the cubic space group Pm3m at 21(1)${\circ}C$ (a=12,271(1)${\AA}$, 12.255(1)${\AA}$, and 12.339(1)${\AA}$, respectively). Their structures were refined to the final error indices. R(weighted) of 0.072 with 130 reflections, 0.050 with 110 reflections, and 0.083 with 86 reflections, respectively, for which $I>3{\rho}(I)$. In each structure, Rb species are found at three different crystallographic sites:3$Rb^+$+ions per unit cell are located at 8-ring centers, ca. 5.6 to 6.4 $Rb^+$ ions are found opposite 6-rings on threefold axes in the large cavity, and ca. 2.5 to 3.0 $Rb^+$ ions are found on threefold axes in the sodalite unit. Also, Ag species are found at two different crystallographic stites: ca. 0.7 to 2.1 $Ag^+$ lie opposite 4-rings and ca. 2.2 to 4.8 Ag atoms are located near the center of the large cavity. In these structures, the numbers of Ag atoms per unit cell are 2.2, 2.4, and 4.8, respectively, and these may form hexasilver clusters at the centers of the large cavities. The $Rb^+$ ions, by blocking 8-rings, may have prevented silver from migrating out of the structure. Each hexasilver cluster is stabilized by coordination to up to 13 $Rb^+$ions. An excess absorption of about 0.8 Rb atom per unit cell indicates that the presence of a triangular symmetric $(Rb_3)2^{+}$ cation in sodalite cavity. At least one large-cavity six-ring $Rb^+$ ion must necessarily approach this cluster and may be viewed as a member of it to give $(Rb)_4^{3+}$, $(Rb)_5^{4+}$ or $(Rb)_6^{5+}$.

  • PDF

Synthesis and Structural Study of Extraframework ZrI6Tl119+ Cationic Cluster in Zeolite A (제올라이트 A 동공 내 비골격 ZrI6Tl119+ 양이온 클러스터의 합성과 구조 연구)

  • Hyeon Seung, Lim;Jong Sam, Park;Cheol Woong, Kim;Woo Taik, Lim
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.4
    • /
    • pp.447-455
    • /
    • 2022
  • Fully dehydrated Tl12-LTA (|Tl12|[Si12Al12O48]-LTA,Tl12-A) was treated with 6.0×103 Pa of ZrI4 (g) at 623 K for 72 hr under anhydrous conditions. The crystal structure of product, |Zr0.25I1.5Tl12|[Si12Al12O48]-LTA, was determined by single-crystal crystallography using synchrotron X-radiation in the cubic space group Pm3m (a = 12.337(2) Å). It was refined using all data to the final error index (for the 712 unique reflections for which Fo> 4σ(Fo) R1/wR2= 0.055/0.189. In this structure, octahedral ZrI62- ions center about 25% of the large cavities (Zr-I = 2.91(4) Å). Each coordinates to eight Tl+ ions and they are further bridged by Tl+ ions in the planes of 8-rings to form a cubic three-dimensional ZrI6Tl119+ cationic cluster. About 1.5 Tl+ ions per unit cell moved to deeper side of sodalite cavity after reaction with ZrI4(g). The remaining Tl+ ions occupy well-established cation positions near 6- and 8-rings.