• 제목/요약/키워드: cathodic and anodic potential

검색결과 95건 처리시간 0.023초

Chemical Properties of Cu( II ) Compound Containing Endocrine Disrupter, Bis-Phenol A

  • Park, Chil-Nam
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제10권S_3호
    • /
    • pp.121-126
    • /
    • 2001
  • The techniques of pulse and cyclic voltammetry were applied to the determination of (E$_{1}$2)$_2$-(E$_{1}$2)$_1$ for two-step electrochemical charge transfers. In addition, a simple amplitude was derived far the dependence of the differential pulse response on (E$_{l}$ 2/)$_1$ and (E$_{1}$2/)$_2$. and the use of peak to peak separation in cyclic voltammetry and differential pulse methods was evaluated. A comparison of the comproportionation constants(Ke) from differential pulse and cyclic voltammetry methods exhibited a good agreement within 5%.

  • PDF

납 산화피막 전극의 특성과 디이소부틸니트로소아민의 전극반응성 (Characteristics of Lead Anodic Films Formed in Aqueous Solutions and Reactivities of Di-iso-butylnitrosoamine in Sea Water)

  • 황금소
    • 한국수산과학회지
    • /
    • 제14권2호
    • /
    • pp.103-115
    • /
    • 1981
  • 해수에서 납 산화피막전극들의 특성과 DBNA의 음극반응성을 조사하기 위해 constant current-poten-tial 방법으로 실현하여 다음과 같은 결론을 얻었다. 1). 대체로 인산 수용액에서 만들어진 산화피막전극에 의한 양성자의 제1단계 환원반응은 DBNA에 의하여 크게 억제되었다. 그러나 $30^{\circ}C$, 0.5M NaCl 수용액과 $6\%_{\circ}$해수에서 DBNA의 첨가 유무에는 관계없이 제2단계의 환원반응이 일어났다. 2). 0.5M NaCl수용액에 DBNA를 첨가했을 때 수산 수용액에서 만들어진 산화피막에 의한 음극반응은 일어나지 않았다. 이 현상은 억제제 DBNA가 수산에서 만들어진 산화피막과 결합하여 완전 절연체를 형성하였기 때문이다. 3). 0.5M NaCl수용액과 $6\%_{\circ}$해수에 DBNA를 첨가하여 인산수용액에서 만들어진 산화피막전극으로 음극반응을 시키면 $(\partial\triangle\;E_{H^+}/\partial T)_{i=const}$의 값은 가가$-0.006\;V/^{\circ}C$$-0.005\;V/^{\circ}C$로서 거의 같았지만, $(\partial E_o/\partial T)_{i=o}$의 값은 각각 $0.002\;V/^{\circ}C$$-0.002\;V/^{\circ}C$로서 대조적인 현상을 나타내었다. 4). 일련의 관계식을 유도하여 몇 가지 상수 및 열역학적 값을 구하였든 바, 0.5M NaCl 수용액, $6\%_{\circ}$해수 및 $6\%_{\circ}$해수에 60mM DBNA를 첨가한 수용액에서 산화피막전극에 의한 양성자의 환원 반응성을 설명한 수 있었다.

  • PDF

Substituent Effects and Correlations of Electrochemical Behaviors with Molecular Orbital Calculation of Thioxantone DerivativesⅠ

  • 곽경도;서무룡;하광수;백우현
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권5호
    • /
    • pp.527-530
    • /
    • 1998
  • This paper presents the electrochemistry and molecular orbital (MO) picture of a series of conformationally-restricted thioxantone derivatives. A series of $C_2-substituted$ thioxanthones were examined to probe the electronic influence of the substituent on the electrooxidation and electroreduction sites (i.e., on the electron densities at the 10-and 9-positions), respectively. In the presence of "electrophoric" groups such as C=O and S, characteristic electrochemical reduction and oxidation responses are observed. The electrochemical reaction was diffusion-controlled, because the $I_p/{\upsilon}^{1/2}$ ratio was constant for the anodic and cathodic wave of thioxantone derivatives. These substituent effects are presented in terms of correlations of oxidation (or reduction) potentials with the highest occupied molecular orbital (HOMO), or lowest unoccupied molecular orbital (LUMO) energies, respectively. There is good correlation between energies of the HOMO vs. $E_{pa}^{(+)}$ and energies of the LUMO vs. $E_{pc}^{(-)}$. Frontier Molecular Orbital (FMO) is changed by the functional group of thioxanthones. FMO energy level was offered us the information about the electron transfer direction, and the coefficient of FMO was offered the information about the electron transfer position. Sulfur atom has an important effect on oxidation potential, $E_{pa}^{(+)}$ and the carbonyl carbon has an important effect on reduction potential, $E_{pc}^{(-)}$. Therefore we were appreciated that the contribution of sulfur atom for the $E_{pa}^{(+)}$ and HOMO energies is larger than the contribution of carbonyl group for the $E_{pc}^{(-)}$ and LUMO energies.

The influence of EAF dust on resistivity of concrete and corrosion of steel bars embedded in concrete

  • Almutlaq, Fahad M.
    • Advances in concrete construction
    • /
    • 제2권3호
    • /
    • pp.163-176
    • /
    • 2014
  • Essentially, when electrical current flows easily in concrete that has large pores filled with highly connective pore water, this is an indication of a low resistivity concrete. In concrete, the flow of current between anodic and cathodic sites on a steel reinforcing bar surface is regulated by the concrete electrical resistance. Therefore, deterioration of any existing reinforced concrete structure due to corrosion of reinforcement steel bar is governed, to some extent, by resistivity of concrete. Resistivity of concrete can be improved by using SCMs and thus increases the concrete electrical resistance and the ability of concrete to resist chloride ingress and/or oxygen penetration resulting in prolonging the onset of corrosion. After depassivation it may slow down the corrosion rate of the steel bar. This indicates the need for further study of the effect of electric arc furnace dust (EAFD) addition on the concrete resistivity. In this study, concrete specimens rather than mortars were cast with different additions of EAFD to verify the electrochemical results obtained and to try to understand the role of EAFD addition in influencing the corrosion behaviour of reinforcing steel bar embedded in concrete and its relation to the resistivity of concrete. The results of these investigations indicated that the corrosion resistance of steel bars embedded in concrete containing EAFD was improved, which may link to the high resistivity found in EAFD-concrete. In this paper, potential measurements, corrosion rates, gravimetric corrosion weight results and resistivity measurements will be presented and their relationships will also be discussed in details.

해양 환경 하에서 431 스테인리스강의 하이브리드 실험을 통한 캐비테이션 손상 거동 (Cavitation Damage Behavior for 431 Stainless Steel by Hybrid Test in Sea Water)

  • 정상옥;김성종
    • 한국표면공학회지
    • /
    • 제46권6호
    • /
    • pp.271-276
    • /
    • 2013
  • The demand for stainless steel is continuously increasing with the development in offshore industry due to its excellent corrosion resistance characteristics. However, it suffers cavitation-erosion in application of high rotating fluid and the damage accelerates in combination with electrochemical corrosion because of Cl-ion in sea water. This paper investigated the complex damage behavior for 431 stainless steel, that is one of martensite stainless steels, through the hybrid test in sea water. Various experiments were carried out, including potential measurement, anodic/cathodic polarization experiment and Tafel analysis. Surface morphology was observed and damage depth was analyzed by SEM and 3D microscope after each experiment, respectively. The results revealed that more active potential was observed under cavitation condition than static condition due to breakdown of passive film and activation of charge transfer, and that higher corrosion current density was obtained under cavitation condition due to synergistic effect of corrosion and erosion.

마찰교반용접한 5456-H116 알루미늄 합금 용접부 표면의 기계적 및 전기화학적 특성 (Mechanical and Electrochemical Characteristics of Welding Parts Surface for Friction Stir Welded 5456-H116 Al Alloy)

  • 장석기;김성종
    • 한국표면공학회지
    • /
    • 제41권4호
    • /
    • pp.156-162
    • /
    • 2008
  • Small FRP(fiber-reinforced polymer) fishing ships have numerous problems with the point of the environmental and recycling perspectives. In light of these aspects, aluminum can be used as a material for ship building. It is environmental friendly, easy to recycle, and provides a high added value to fishing boats. In this paper, we report on mechanical and electrochemical characteristics of welding parts for friction stir welded 5456-H116 Al alloy. In friction stir welded at various traveling speeds under the rotation speed of 500 RPM, the best characteristics presented in traveling speed of 15mm/min. The anodic polarizations of base metal and welding metal were observed tendency which current density from the open circuit potential suddenly increase. The cathodic polarization presented concentrated polarization caused by the dissolved oxygen reduction reaction and activation polarization caused by hydrogen generation. From result of Tafel analysis, the corrosion potential of 5456 alloy(Base metal) was lower than that of friction stir welded part, as were its corrosion current densities.

Electrochemical modification of the porosity and zeta potential of montmorillonitic soft rock

  • Wang, Dong;Kang, Tianhe;Han, Wenmei;Liu, Zhiping;Chai, Zhaoyun
    • Geomechanics and Engineering
    • /
    • 제2권3호
    • /
    • pp.191-202
    • /
    • 2010
  • The porosity (including the specific surface area and pore volume-diameter distribution) of montmorillonitic soft rock (MSR) was studied experimentally with an electrochemical treatment, based on which the change in porosity was further analyzed from the perspective of its electrokinetic potential (${\zeta}$ potential) and the isoelectric point of the electric double layer on the surface of the soft rock particles. The variation between the ${\zeta}$ potential and porosity was summarized, and used to demonstrate that the properties of softening, degradation in water, swelling, and disintegration of MSR can be modified by electrochemical treatment. The following conclusions were drawn. The specific surface area and total pore volume decreased, whereas the average pore diameter increased after electrochemical modification. The reduction in the specific surface area indicates a reduction in the dispersibility and swelling-shrinking of the clay minerals. After modification, the ${\zeta}$ potential of the soft rock was positive in the anodic zone, there was no isoelectric point, and the rock had lost its properties of softening, degradation in water, swelling, and disintegration. The ${\zeta}$ potential increased in the intermediate and cathodic zones, the isoelectric point was reduced or unchanged, and the rock properties are reduced. When the ${\zeta}$ potential is increased, the specific surface area and the total pore volume were reduced according to the negative exponent law, and the average pore diameter increased according to the exponent law.

Trapezoidal Cyclic Voltammetry as a Baseline for Determining Reverse Peak Current from Cyclic Voltammograms

  • Carla B. Emiliano;Chrystian de O. Bellin;Mauro C. Lopes
    • Journal of Electrochemical Science and Technology
    • /
    • 제15권3호
    • /
    • pp.405-413
    • /
    • 2024
  • Several techniques for determining the reverse peak current from a cyclic voltammogram (CV) for a reversible system are described in the literature: CV itself as a baseline with long switching potential (Eλ) that serves as a baseline for other CVs, Nicholson equation that uses CV parameters to calculation reverse peak current and linear extrapolation of the current obtained at the switching potential. All methods either present experimental difficulties or large errors in the peak current determination. The paper demonstrates, both theoretically and experimentally, that trapezoidal cyclic voltammetry (TCV) can be used as a baseline to determine anodic peak current (iap) with high accuracy and with a switching potential shorter than that used by CV, as long as Eλ is at least 130 mV away from the cathodic peak. Beyond this value of switching potential the electroactive specie is completely depleted from the electrode surface. Using TCV with Eλ = 0.34 V and a switching time (tλ) of 240 s as a baseline, the determination of the reverse peak current presents a deviation from the expected value of less than 1% for most of the CVs studied (except cases when Eλ is close to the direct potential peak). This result presents better accuracy than the Nicholson equation and the linear extrapolation of the current measured at the switching potential, in addition to presenting a smaller error than that obtained in the acquisition of the experimental current. Furthermore, determining the reverse peak current by extrapolating the linear fit of iap vs. ${\sqrt[1/]{t_{\lambda}}}$ to infinite time gave a reasonable approximation to the expected value. Experiments with aqueous potassium hexacyanoferrate (II) and ferrocene in acetonitrile confirmed the theoretical predictions.

질산과 황산 용액중의 철강의 전기방식도에 관한 연구 (A study on electrochemical protection diagrams of steel in nitric and sulfuric acid solutions)

  • 전대희;김진경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.43-63
    • /
    • 1989
  • Various kinds of corrosion prevention methods have been developed. It is known that the method of electrochemical protection is more effective and economical than any other method on the large scale metal structures in corrosive solutions. Strong acid solutions such as nitric and sulfuric acid solutions are often used in industries, and the expensive stainless steel is almost exclusively used for the equipment that comes in contact with such acid solutions. However, it is more reasonable that carbon steel is used rather than stainless steel depending upon concentration of those acid solutions from the economical viewpoint. In this study, the typical strong acid solution such as nitric and sulfuric acid solutions are chosen for the experiment and the selected materials of specimen are the stainless steels of SUS 304L and SUS 316L, the carbon steels of SS 41, SM 50 and RA 32, and highly pure lead. Electrochemical protection diagrams can be drawn with data from the external cathodic and anodic polarization curves of SUS 304L, SUS 316L and SM 50 steels in 5-60% nitric acid solutions and from those polarization curves of SS 41, RA 32, SM 50 and SUS 316L steels, and highly pure lead in 2.5-98% sulfuric acid solutions at the slow scanning rate. The data obtained with using the determination method of the optimum cathodic protection potential, the Tafel extrapolation method and the characteristics of anodic polarization curves. The main results obtained from the diagrams are as follows: 1) In nitric acid solution : (1) Corrosion potentials exist in each of those corrosion zones on the stainless steels in the lower concentration than about 12% solutions and on the high tensile strength steels in the lower concentration than about 30% solutions, but the corrosion current (density) in each zone is small on the above mentioned former steels and large on the latter ones. (2) The stainless steels can be self-passivated in the higher concentration than 15% solutions, and the high tensile strength steels gives rise to the same phenomenon in the higher concentration than 35% solutions. (3) The stainless steels in the lower concentration than 60% solutions and the high tensile strength steels in the higher concentration than 35% solutions can be used without protection, but the latter steels must ve protected anodically in the lower conccentration than about 30% solutions. 2) In sufuric acid solution : (1) The carbon steels can be self-passivated in the higher concentration than 45% solutions, and the SUS 316L steel in higher concentration than 75% solutions and the lead in all concentration solutions also gives rise to the same phenomenon. (2) The lead in the lower concentration than 80% solutions and the SUS 316L steel in the higher concentration than 80% solutions can be used without protection. (3) The carbon steels in the higher concentration than 50% solutions also can be used without protecting economically, but the SUS 316L steel in the 20-70% solutions are considerably corrosive without protecting anodically.

  • PDF

고분자전해질 연료전지 분리판용 304 스테인리스 강재의 유기습식 및 건식코팅에 따른 내식성 비교연구 (Comparative Study of Corrosion Resistance of Organic Coating and Dry Coating on 304 Stainless Steels Used for Bipolar Plates in Polymer Electrolyte Membrane Fuel Cells)

  • 김용현;박진성;김성진
    • Corrosion Science and Technology
    • /
    • 제22권4호
    • /
    • pp.242-251
    • /
    • 2023
  • The electrochemical corrosion behaviors of 304 stainless steels (STSs) with various coatings (organic coating and dry coating) were examined, and their applicability as bipolar plates in polymer electrolyte membrane fuel cells (PEMFCs) was validated. The results showed that the organic-coated samples had a significant decrease in anodic and cathodic current density compared to the uncoated sample. However, an increase in carbon black content in the organic coating or additional heat treatment at 700 ℃ resulted in a decrease in corrosion resistance. In addition, improvements in corrosion resistance achieved by adding TiO2 powder to the organic coating were found to be limited. In contrast, dry coating with TiC and CrC exhibited higher corrosion potential, significantly lower current density, and reduced contact resistance compared to the organic coatings. Notably, the TiC-coated sample showed a comparatively lower current density and more stable behavior than the CrC-coated sample. Based on a series of experimental results, a thin TiC coating without defects is proposed as a promising surface treatment strategy for STS bipolar plates in PEMFC.