• 제목/요약/키워드: cathode material

검색결과 895건 처리시간 0.022초

고체산화물 연료전지 연료극 및 전해질 미세구조 최적화 (Optimization of anode and electrolyte microstructure for Solid Oxide Fuel Cells)

  • 노종혁;명재하
    • Korean Chemical Engineering Research
    • /
    • 제57권4호
    • /
    • pp.525-530
    • /
    • 2019
  • 고체산화물 연료전지의 성능과 안정성은 전극의 기공률, 기공 분포와 전해질의 치밀도, 두께에 따라 결정 된다. 연료극의 기공률과 기공 분포는 활성면적와 연료 흐름에 영향을 주고, 전해질의 치밀한 미세구조와 두께는 단위전지의 Ohmic 저항에 영향을 준다. 하지만 이를 위해 값 비싼 공정 장비를 이용하거나 여러 단계의 제작 공정이 추가 될 경우 단위전지 제작비가 증가하므로 상업화를 목표로 하는 연구에는 적합하지 않다. 본 연구에서는 위와 같은 문제점들을 해결하기 위하여 상용 소재 기반의 NiO-YSZ 연료극을 선정 후 간단한 혼합 방법 및 일축가압 성형법과 담금코팅(dip coating) 공정을 사용하여 저비용 고효율의 세라믹 공정 기반의 고성능 단위전지를 제작하였다. 연료극의 기공률은 기공형성제로서 사용되는 카본 블랙(CB, carbon black)의 첨가량(10~20 wt%)과 최종 소결온도($1350{\sim}1450^{\circ}C$)를 변경하며 제어하였고, YSZ 전해질의 두께와 미세구조는 담금코팅 슬러리의 고상 분말량(YSZ, 1~5 vol%)을 제어하여 치밀한 박막의 전해질을 구현하고자 하였다. 그 결과 Ni-YSZ 연료극에서 최적의 값으로 잘 알려진 40%의 기공률은 카본 블랙을 15 wt% 첨가하고최종소결온도를 $1350^{\circ}C$로설정함으로써얻을수있었다. 담금코팅을통한 YSZ 두께는 $2{\sim}28{\mu}m$까지 제어가 가능하였고, 3 vol%의 고상분말량에서 치밀한 전해질 미세구조가 형성되었다. 최종적으로 40%의 기공률을 갖는 Ni-YSZ 연료극, $20{\mu}m$ 두께의 치밀한 YSZ전해질, LSM-YSZ 공기극으로 구성된 단위전지는 $800^{\circ}C$에서 $1.426Wcm^{-2}$의 우수한 성능을 얻을 수 있었다.

연속류식 미생물연료전지의 유기물 제거 및 전기 발생 특성 (Characteristics of Organic Material Removal and Electricity Generation in Continuously Operated Microbial Fuel Cell)

  • 김정구;정연구;박송인
    • 유기물자원화
    • /
    • 제18권1호
    • /
    • pp.57-65
    • /
    • 2010
  • 양성자 교환막 미생물연료전지(PEM-MFC)의 경우 양극의 표면적을 기준으로 유기물 제거능력을 산출하면 유기물 부하에 관계없이 $3.0gCOD/m^2$ 수준으로 나타났다. 또 안정적인 전압이 관찰된 시기의 쿨롱 효율은 22.4~23.4 %로 높지 않은 수준이었다. 양성자 교환막은 양성자뿐만 아니라 초산도 통과시키는 것으로 확인되었다. 양성자 교환막을 사용하지 않은 상향류식 미생물연료전지(ML-MFC)의 경우 다공성 RVC 전극을 사용한 관계로 전극의 외부면적당 유기물 제거능력은 $9.3{\sim}10.1gCOD/m^2{\cdot}d$로 나타났다. 이는 양성자 교환막을 사용한 경우에 비하여 3배 정도 높은 수준이다. 그러나 RVC 양극의 비표면적 차이에 따른 유기물 제거 능력 차이는 크지 않았다. ML-MFC의 경우 전기 발생이 안정적이지 못하였으며, 쿨롱 효율도 3.6~3.7 %로 매우 낮은 수준이었다. 전기 발생량이 안정적이지 못한 것은 음극에 성장한 미생물의 영향으로 판단된다. 이를 해결하기 위해 음극부의 공기주입량을 증가시키면 일시적으로 전기 발생이 증가하였으나 오래 지속되지 못하였다.

RuO2/Ti, PtO2/Ti, IrO2/Ti 및 흑연전극을 이용한 염료폐수의 전기화학적 처리 (Electrochemical Treatment of Dye Wastewater Using Fe, RuO2/Ti, PtO2/Ti, IrO2/Ti and Graphite Electrodes)

  • 김아람;박현정;원용선;이태윤;이제근;임준혁
    • 청정기술
    • /
    • 제22권1호
    • /
    • pp.16-28
    • /
    • 2016
  • 섬유산업은 염색폐수의 농도가 높고 방출량이 많아 고도의 공해산업으로 알려져 있다. 염색폐수에는 색도물질 뿐만 아니라 다량의 유기화합물과 불용성 물질이 섞여 있다. 합성염료 중 아조(azo) 염료는 특히 오염물질의 배출이 많은 것으로 알려져 있다. 전기화학적 폐수처리방법은 전극의 산화·환원반응에 의해 색도와 유기물 등을 처리하는 방법으로 다른 폐수처리방법들에 비해 반응기가 작고 경제적이고 간단하며 오염물제거속도가 빠르다. 본 연구에서는 diazo 화합물인 CI Direct Blue 15 염색 폐수의 전기화학적 분해특성을 연구하였다. 실험은 전극재질과 조업조건을 달리하여 그에 따른 분해효율을 알아보고자 하였으며, 탈색 효율을 향상시킬 수 있는 최적전극 재질과 조업조건을 알아보고자 하였다. 조업조건으로는 전해질 농도, 전류밀도, 반응 온도, 초기 pH의 영향을 검토하였다. 음극은 stainless steel 전극을 사용하였고, 양극은 graphite와 RuO2/Ti, PtO2/Ti, IrO2/Ti를 사용하여 조업조건에 따른 각 전극의 염색폐수 분해성능 실험을 수행하였다. 그 결과 전해질의 농도와 전류밀도 증가에 따라 전기분해 효율은 증가하였다. 양극 재질에 따른 전기분해 효율은 산성 전해질 조건에서 RuO2/Ti > PtO2/Ti > IrO2/Ti > graphite 순이었고 중성과 염기성에서는 RuO2/Ti > IrO2/Ti > PtO2/Ti > graphite의 순으로 나타났다. 따라서 염색 폐수의 전기분해 처리에는 RuO2/Ti와 IrO2/Ti가 가장 효율적인 양극재질이었다.

아염소산나트륨의 무격막 전기분해에 의한 이산화염소 생성: 양전극 재질에 따른 영향 (Electrochemical Generation of Chlorine Dioxide from Sodium Chlorite Using Un-Divided Electrochemical Cell: Effect of Anode Materials)

  • 권태옥;박보배;노현철;문일식
    • Korean Chemical Engineering Research
    • /
    • 제48권2호
    • /
    • pp.275-282
    • /
    • 2010
  • 아염소산나트륨($NaClO_2$)의 무격막 전기분해(un-divided electrolysis)에 의한 이산화염소(chlorine dioxide; $ClO_2$) 제조에서 양전극(anode) 재질에 따른 이산화염소수 발생특성을 조사하였다. 양전극으로는 $IrO_2$-coated Ti, $RuO_2$-coated Ti, DSA(dimensionally stable anode) 전극을 사용하였으며, 음전극으로는 Pt-coated Ti 전극을 사용하였다. 다양한 양전극을 사용한 무격막 전해셀(un-divided electrochemical cell) 시스템에서 이산화염소의 전구체인 아염소산나트륨 ($NaClO_2$) 농도, 전해질로 사용된 염화나트륨(NaCl) 농도 그리고 전구체 용액의 전해셀 체류시간(cell residence time;$t_R$), 전구체 용액의 초기 pH 그리고 무격막 전해셀에 공급된 전류(current; A)와 같은 운전 파라미터가 이산화염소수 발생에 미치는 영향을 조사하고 최적 운전조건을 도출하였다. $IrO_2$-coated Ti, $RuO_2$-coated Ti 그리고 DSA 양전극 시스템에서 최적 전해셀 체류시간은 각각 약 2.27, 1.52, 1.52 s, 전구체 용액의 초기 pH는 약 2.3, 최적 아염소산나트륨 농도는 $IrO_2$-coated Ti와 $RuO_2$-coated Ti 양전극 시스템이 약 0.43 g/L, DSA 양전극 시스템이 약 0.32 g/L 그리고 최적전해질 농도는 약 5.85 g/L로 나타났으며 무격막 전해셀에 공급된 최적 전류는 약 0.6 A로 나타났다. 산출된 최적 무격막 전해셀 조건에서 이산화염소수 발생을 위한 $IrO_2$-coated Ti, $RuO_2$-coated Ti 그리고 DSA 양전극 시스템의 전류효율(current efficiency; C.E.%)과 에너지 소모율(energy consumption; E.C. $W{\cdot}hr/g-ClO_2$)은 각각 약 79.80, 114.70, 70.99% 그리고 1.38, 1.03, $1.61W{\cdot}hr/g-ClO_2$로 나타났다.

용융탄산염 연료전지용 in-situ 소결된 Ni-Al 합금 연료극 개발 (Development of in-situ Sintered Ni-Al Alloy Anode for Molten Carbonate Fuel Cell)

  • 천현아;윤성필;한종희;남석우;임태훈
    • 전기화학회지
    • /
    • 제9권3호
    • /
    • pp.124-131
    • /
    • 2006
  • 기존의 용융탄산염 연료전지용 연료극인 Ni-Cr전극은 제조과정이 복잡하며, 운전조건에서 전극의 소결과 creep현상으로 인하여 전극의 기공률과 두께가 감소하는 문제점이 있어 상용화에 걸림돌이 되고 있다. 이에 본 연구에서는 Ni-Cr계 전극보다 creep저항성이 우수하다고 알려져 있는 Ni-Al계 합금을 사용하였다. 또한 공정의 단순화로 비용을 절감시키기 위해, 소성과정을 제외하고 tape casting과 건조과정을 거친 green sheet를 단위전지에 장착하여 전처리 과정 중에 소결시키는 in-situ 소결법에 대해 연구하였다. 그러나 기존의 전처리 방법을 이용한 단위전지 평가에서 Ni-Al 합금의 상분리 현상으로 인해 기대하였던 creep저항성 향상을 확인하지 못했고, 운전중 Ni-Al합금 연료극에 단위전지의 구성요소인 matrix 기공크기보다 작은 기공(${\leq}0.4{\mu}m$)이 다량 생성되어 전해질 재분배를 일으켜 성능이 하락하는 문제점이 나타났다. 따라서 이러한 문제점을 해결하고자 전처리 조건을 변화시키며 실험을 수행하였다. 그 결과, 비활성 기체인 질소를 일정한 구간에 사용함으로써 기존 전처리에서 발생하였던 Ni-Al 합금의 상분리 현상을 억제할 수 있었으며 이로 인해 creep저항성 또한 향상시킬 수 있었다. 그러나 운전 중 생성되는 matrix기공크기보다 작은 기공(${\leq}0.4{\mu}m$) 형성비율은 억제할 수 없었다. 위의 전처리 조건을 가지고 단위전지 운전실험을 하였고, 전해질 함침비율을 조절함에 따라 성능을 향상시킬 수 있었으며 2000시간 동안 일정하게 유지함을 확인하였다. 이로부터 기존의 소성전극과 비교하여 많은 장점을 가지고 있는 in-situ 소결법의 가능성을 확인할 수 있었다.