• Title/Summary/Keyword: categorical preprocessing

Search Result 7, Processing Time 0.019 seconds

Prediction of the price for stock index futures using integrated artificial intelligence techniques with categorical preprocessing

  • Kim, Kyoung-jae;Han, Ingoo
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1997.10a
    • /
    • pp.105-108
    • /
    • 1997
  • Previous studies in stock market predictions using artificial intelligence techniques such as artificial neural networks and case-based reasoning, have focused mainly on spot market prediction. Korea launched trading in index futures market (KOSPI 200) on May 3, 1996, then more people became attracted to this market. Thus, this research intends to predict the daily up/down fluctuant direction of the price for KOSPI 200 index futures to meet this recent surge of interest. The forecasting methodologies employed in this research are the integration of genetic algorithm and artificial neural network (GAANN) and the integration of genetic algorithm and case-based reasoning (GACBR). Genetic algorithm was mainly used to select relevant input variables. This study adopts the categorical data preprocessing based on expert's knowledge as well as traditional data preprocessing. The experimental results of each forecasting method with each data preprocessing method are compared and statistically tested. Artificial neural network and case-based reasoning methods with best performance are integrated. Out-of-the Model Integration and In-Model Integration are presented as the integration methodology. The research outcomes are as follows; First, genetic algorithms are useful and effective method to select input variables for Al techniques. Second, the results of the experiment with categorical data preprocessing significantly outperform that with traditional data preprocessing in forecasting up/down fluctuant direction of index futures price. Third, the integration of genetic algorithm and case-based reasoning (GACBR) outperforms the integration of genetic algorithm and artificial neural network (GAANN). Forth, the integration of genetic algorithm, case-based reasoning and artificial neural network (GAANN-GACBR, GACBRNN and GANNCBR) provide worse results than GACBR.

  • PDF

A Study on Development Environments for Machine Learning (머신러닝 자동화를 위한 개발 환경에 관한 연구)

  • Kim, Dong Gil;Park, Yong-Soon;Park, Lae-Jeong;Chung, Tae-Yun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.6
    • /
    • pp.307-316
    • /
    • 2020
  • Machine learning model data is highly affected by performance. preprocessing is needed to enable analysis of various types of data, such as letters, numbers, and special characters. This paper proposes a development environment that aims to process categorical and continuous data according to the type of missing values in stage 1, implementing the function of selecting the best performing algorithm in stage 2 and automating the process of checking model performance in stage 3. Using this model, machine learning models can be created without prior knowledge of data preprocessing.

Improving Classification Performance for Data with Numeric and Categorical Attributes Using Feature Wrapping (특징 래핑을 통한 숫자형 특징과 범주형 특징이 혼합된 데이터의 클래스 분류 성능 향상 기법)

  • Lee, Jae-Sung;Kim, Dae-Won
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.12
    • /
    • pp.1024-1027
    • /
    • 2009
  • In this letter, we evaluate the classification performance of mixed numeric and categorical data for comparing the efficiency of feature filtering and feature wrapping. Because the mixed data is composed of numeric and categorical features, the feature selection method was applied to data set after discretizing the numeric features in the given data set. In this study, we choose the feature subset for improving the classification performance of the data set after preprocessing. The experimental result of comparing the classification performance show that the feature wrapping method is more reliable than feature filtering method in the aspect of classification accuracy.

Comparison of Deep Learning Loss Function Performance for Medical Video Biomarker Extraction (의료 영상 바이오마커 추출을 위한 딥러닝 손실함수 성능 비교)

  • Seo, Jin-beom;Cho, Young-bok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.72-74
    • /
    • 2021
  • The deep learning process currently utilized in various fields consists of data preparation, data preprocessing, model generation, model learning, and model evaluation. In the process of model learning, the loss function compares the value of the model with the actual value and outputs the difference. In this paper, we analyze various loss functions used in the deep learning model for biomarker extraction, which measure the degree of loss of neural network output values, and try to find the best loss function through experiments.

  • PDF

An Incremental Method Using Sample Split Points for Global Discretization (전역적 범주화를 위한 샘플 분할 포인트를 이용한 점진적 기법)

  • 한경식;이수원
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.7
    • /
    • pp.849-858
    • /
    • 2004
  • Most of supervised teaming algorithms could be applied after that continuous variables are transformed to categorical ones at the preprocessing stage in order to avoid the difficulty of processing continuous variables. This preprocessing stage is called global discretization, uses the class distribution list called bins. But, when data are large and the range of the variable to be discretized is very large, many sorting and merging should be performed to produce a single bin because most of global discretization methods need a single bin. Also, if new data are added, they have to perform discretization from scratch to construct categories influenced by the data because the existing methods perform discretization in batch mode. This paper proposes a method that extracts sample points and performs discretization from these sample points in order to solve these problems. Because the approach in this paper does not require merging for producing a single bin, it is efficient when large data are needed to be discretized. In this study, an experiment using real and synthetic datasets was made to compare the proposed method with an existing one.

Evolutionary Hypernetwork Model for Higher Order Pattern Recognition on Real-valued Feature Data without Discretization (이산화 과정을 배제한 실수 값 인자 데이터의 고차 패턴 분석을 위한 진화연산 기반 하이퍼네트워크 모델)

  • Ha, Jung-Woo;Zhang, Byoung-Tak
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.2
    • /
    • pp.120-128
    • /
    • 2010
  • A hypernetwork is a generalized hypo-graph and a probabilistic graphical model based on evolutionary learning. Hypernetwork models have been applied to various domains including pattern recognition and bioinformatics. Nevertheless, conventional hypernetwork models have the limitation that they can manage data with categorical or discrete attibutes only since the learning method of hypernetworks is based on equality comparison of hyperedges with learned data. Therefore, real-valued data need to be discretized by preprocessing before learning with hypernetworks. However, discretization causes inevitable information loss and possible decrease of accuracy in pattern classification. To overcome this weakness, we propose a novel feature-wise L1-distance based method for real-valued attributes in learning hypernetwork models in this study. We show that the proposed model improves the classification accuracy compared with conventional hypernetworks and it shows competitive performance over other machine learning methods.

A Study on Forecasting Accuracy Improvement of Case Based Reasoning Approach Using Fuzzy Relation (퍼지 관계를 활용한 사례기반추론 예측 정확성 향상에 관한 연구)

  • Lee, In-Ho;Shin, Kyung-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.67-84
    • /
    • 2010
  • In terms of business, forecasting is a work of what is expected to happen in the future to make managerial decisions and plans. Therefore, the accurate forecasting is very important for major managerial decision making and is the basis for making various strategies of business. But it is very difficult to make an unbiased and consistent estimate because of uncertainty and complexity in the future business environment. That is why we should use scientific forecasting model to support business decision making, and make an effort to minimize the model's forecasting error which is difference between observation and estimator. Nevertheless, minimizing the error is not an easy task. Case-based reasoning is a problem solving method that utilizes the past similar case to solve the current problem. To build the successful case-based reasoning models, retrieving the case not only the most similar case but also the most relevant case is very important. To retrieve the similar and relevant case from past cases, the measurement of similarities between cases is an important key factor. Especially, if the cases contain symbolic data, it is more difficult to measure the distances. The purpose of this study is to improve the forecasting accuracy of case-based reasoning approach using fuzzy relation and composition. Especially, two methods are adopted to measure the similarity between cases containing symbolic data. One is to deduct the similarity matrix following binary logic(the judgment of sameness between two symbolic data), the other is to deduct the similarity matrix following fuzzy relation and composition. This study is conducted in the following order; data gathering and preprocessing, model building and analysis, validation analysis, conclusion. First, in the progress of data gathering and preprocessing we collect data set including categorical dependent variables. Also, the data set gathered is cross-section data and independent variables of the data set include several qualitative variables expressed symbolic data. The research data consists of many financial ratios and the corresponding bond ratings of Korean companies. The ratings we employ in this study cover all bonds rated by one of the bond rating agencies in Korea. Our total sample includes 1,816 companies whose commercial papers have been rated in the period 1997~2000. Credit grades are defined as outputs and classified into 5 rating categories(A1, A2, A3, B, C) according to credit levels. Second, in the progress of model building and analysis we deduct the similarity matrix following binary logic and fuzzy composition to measure the similarity between cases containing symbolic data. In this process, the used types of fuzzy composition are max-min, max-product, max-average. And then, the analysis is carried out by case-based reasoning approach with the deducted similarity matrix. Third, in the progress of validation analysis we verify the validation of model through McNemar test based on hit ratio. Finally, we draw a conclusion from the study. As a result, the similarity measuring method using fuzzy relation and composition shows good forecasting performance compared to the similarity measuring method using binary logic for similarity measurement between two symbolic data. But the results of the analysis are not statistically significant in forecasting performance among the types of fuzzy composition. The contributions of this study are as follows. We propose another methodology that fuzzy relation and fuzzy composition could be applied for the similarity measurement between two symbolic data. That is the most important factor to build case-based reasoning model.