• Title/Summary/Keyword: catechin hydrate

Search Result 3, Processing Time 0.045 seconds

Catechin hydrate prevents cisplatin-induced spermatogonia GC-1 spg cellular damage

  • Hyeon Woo Shim;Won-Yong Lee;Youn-Kyung Ham;Sung Don Lim;Sun-Goo Hwang;Hyun-Jung Park
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.39 no.2
    • /
    • pp.145-152
    • /
    • 2024
  • Background: Despite its anticancer activity, cisplatin exhibits severe testicular toxicity when used in chemotherapy. Owing to its wide application in cancer therapy, the reduction of damage to normal tissue is of imminent clinical need. In this study, we evaluated the effects of catechin hydrate, a natural flavon-3-ol phytochemical, on cisplatin-induced testicular injury. Methods: Type 2 mouse spermatogonia (GC-1 spg cells) were treated with 0-100 μM catechin and cisplatin. Cell survival was estimated using a cell proliferation assay and Ki-67 immunostaining. Apoptosis was assessed via flow cytometry with the Dead Cell Apoptosis assay. To determine the antioxidant effects of catechin hydrate, Nrf2 expression was measured using qPCR and CellROX staining. The anti-inflammatory effects were evaluated by analyzing the gene and protein expression levels of iNOS and COX2 using qPCR and immunoblotting. Results: The 100 μM catechin hydrate treatment did not affect healthy GC-1 spg cells but, prevented cisplatin-induced GC-1 spg cell death via the regulation of anti-oxidants and inflammation-related molecules. In addition, the number of apoptotic cells, cleaved-caspase 3 level, and BAX gene expression levels were significantly reduced by catechin hydrate treatment in a cisplatin-induced GC-1 spg cell death model. In addition, antioxidant and anti-inflammatory marker genes, including Nrf2, iNOS, and COX2 were significantly downregulated by catechin hydrate treatment in cisplatintreated GC-1 cells. Conclusions: Our study contributes to the opportunity to reintroduce cisplatin into systemic anticancer treatment, with reduced testicular toxicity and restored fertility.

Comparison of Chemical Properties and Phenolic Compound for Ethanol Extract of Blueberry, Bokbunja and Mulberry and their Pomaces (블루베리·복분자와 오디 그리고 이들 부산물 주정 추출물의 이화학적 특성 및 페놀화합물 함량 비교)

  • Kang, Da-Rae;Chung, Yi-Hyung;Shim, Kwan-Seob;Shin, Dae-Keun
    • Korean Journal of Organic Agriculture
    • /
    • v.23 no.3
    • /
    • pp.535-547
    • /
    • 2015
  • In this study, the chemical properties and phenolic compound of blueberry, bokbunja and mulberry and their pomace were determined to develop them as functional food materials. Water content of individual whole berry was ranged from 84.25-86.20%, and water content was significantly high in whole berries rather than their pomace (p<0.01). Additionally, each berry and its pomace's pH was 3.32-5.18. Among them, whole mulberry showed the highest pH which is 5.18 (p<0.01). Total polyphenol and flavonoid contents were the greatest in blueberry pomace and they were 24.81 mg/g and 2.13 mg/g, respectively (p<0.01). However, mulberry pomace generated the greatest anthocyanin content compared to others (p<0.01). In phenolic compound profiles, cyanin chloride was detected in mulberry and bokbunja. Epigallocatechin, gallocatechin and isorhamnetin were found only in blueberry. Catechin (hydrate) and epicatechin were greater in pomaces than whole berries except blueberry (p<0.01), otherwise, significantly great rutin (trihydrate) and quercetin contents were found in whole berries as compared to their pomace except blueberry (p<0.01). Gallic acid was significantly greatest in mulberry (p<0.01) and quercetin 3-D-galactoside was significantly greatest in blueberry (p<0.01). Apigenin and luteolin were traced in mulberry, and mulberry pomace showed greater apigenin and luteolin contents than whole mulberry (p<0.01). Naringenin was greater in pomaces than whole berries (p<0.01). As a result, it was found that all berry extracts used in this study were able to be applied as functional food materials and their pomace contained high phenolic compound enough to be a good source of phytochemical for nutraceutical use.

Neuroprotective effect of Coreopsis lanceolata extract against hydrogen-peroxide-induced oxidative stress in PC12 cells

  • Kyung Hye Seo;Hyung Don Kim;Jeong-Yong Park;Dong Hwi Kim;Seung-Eun Lee;Gwi Young Jang;Yun-Jeong Ji;Ji Yeon Lee
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.2
    • /
    • pp.175-184
    • /
    • 2022
  • The present study investigated the neuroprotective effects of Coreopsis lanceolate extract against hydrogen-peroxide (H2O2)-induced oxidative damage and cell death in pheochromocytoma 12 (PC12) cells. Reactive oxygen species (ROS), 2,2'-azinobis (3-ethylbebzothiazoloine-6-sulfonic acid) diammonium salt, and 1,1-diphenyl-2-picrrylhydrazyl radical scavenging activities, as well as the expression levels of proteins associated with oxidative damage and cell death were investigated. According to the results, C. lanceolate extract exhibited inhibitory activity against intracellular ROS generation and cell-damaging effects induced by hydroxyl radicals in a dose-dependent manner. Total phenolic and flavonoid contents were 22.3 mg·g-1 gallic acid equivalent and 16.2 mg·g-1 catechin equivalent, respectively. Additionally, a high-performance liquid chromatography (HPLC) assay based on the internal standard method used to detect phenolic compounds. The phenolic compounds identified in C. lanceolata extract contained (+)-catechin hydrate (5.0 ± 0.0 mg·g-1), ferulic acid (1.6 ± 0.0 mg·g-1), chlorogenic acid (1.5 ± 0.0 mg·g-1), caffeic acid (1.2 ± 0.0 mg·g-1), naringin (0.9 ± 0.0 mg·g-1), and p-coumaric acid (0.5 ± 0.0 mg·g-1). C. lanceolata extract attenuated pro-apoptotic Bax expression levels and enhanced the expression levels of anti-apoptotic Bcl-2, caspase-3, and caspase-9 proteins. Therefore, C. lanceolata is a potential source of materials with neuroprotective properties against neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases.