• Title/Summary/Keyword: catalysts

Search Result 2,496, Processing Time 0.026 seconds

Development of High Performance WGS Catalyst for Fuel Processor Applications (연료 개질기용 고성능 수성가스 전환반응 촉매 개발)

  • Lee, Yoon-Ju;Ryu, Jong-Woo;Kim, Dae-Hyun;Choi, Eun-Hyung;Noh, Won-Suck;Lee, Sang-Deuk;Moon, Dong-Ju
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.451-454
    • /
    • 2006
  • WGS reaction over Mo2C and ceria based catalysts was investigated to develop an alternative commercial Cu-Zn/Al2O3 catalyst for fuel processor and hydrogen station. The Mo2C catalysts were prepared by a temperature programmed method and the various metal supported cerium oxide catalysts were prepared by an Impregnation method. The catalysts were characterized by the N2 physisorption, Co chemisorption, XRD, TEM and TPR. It was found that Mo2C and 0.2wt% Pt-40wt%, Ni/CeO2 catalysts had higher activity and stability than the Cu-Zn/Al203 above $260^{\circ}C$. Moreover, CO conversion of more than 85% was observed at $280{\sim}300^{\circ}C$. But all catalysts were deactivated during the thermal cycling runs. The results suggest that these catalysts are an attractive candidate for the alternative Cu-Zn/Al2O3 catalyst for fuel processor and hydrogen station applications.

  • PDF

Effect of Preparation Conditions on the Hydrogenation Activity and Metal Dispersion of Pt/C and Pd/C Catalysts

  • Jhung, Sung-Hwa;Lee, Jin-Ho;Lee, Jong-Min;Lee, Ji-Hye;Hong, Do-Young;Kim, Myong-Woon;Chang, Jong-San
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.4
    • /
    • pp.563-568
    • /
    • 2005
  • The Pt/C and Pd/C catalysts were prepared from conventional chloride precursors by adsorption or precipitation-deposition methods. Their activities for hydrogenation reactions of cyclohexene and acetophenone were compared with those of commercial catalysts. The Pt/C and Pd/C catalysts obtained from the adsorption procedure reveal higher hydrogenation activity than commercial catalysts and the catalysts prepared by the precipitation-deposition method. Their improved performances are attributed to the decreased metal crystallite sizes of Pt or Pd formed on the active carbon support upon the adsorption of the precursors probably due to the same negative charges of the chloride precursor and the carbon support. Under the preparation conditions studied, the reduction of the supported catalysts using borohydrides in liquid phase is superior to a gas phase reduction by using hydrogen in the viewpoint of particle size, hydrogenation activity and convenience.

The Hydrodesulfurization over NiPtMo Catalysts and Acidic Characterization of Supports (NiPtMo계 촉매 담체의 산특성 및 수소첨가 탈황반응)

  • 김문찬;이원묵;김경림
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.10 no.4
    • /
    • pp.281-288
    • /
    • 1994
  • The hydrodesulfurization (DBT) were Peformed over NiPtMo catalysts supported on HZSM-5, LaY and ${\gamma}$- $Al_2$O$_3$under high H$_2$ pressure. And the acidities of these catalysts were characterized by using TGA and DSC. The result showed that the order of the acid strength for prepared supports was HZSM -5>LaY>${\gamma}$- A1$_2$O$_3$. For the acid amount we obtained the same result for the acid strength The acid strength and the acid amount mainly depended on the kinds of supports whose acid site were strong or not The activity of the hydrodesulfurization decreased for catalysts which had strong acid sites. The origin of acid site was Bronsted in NH50 and NY catalysts And it was Lewis in NA catalyst The order of desorption activation energy for Pyridine was NH50>NY>NA. And the result was the same for thiophene. The activity of the hydrodesulfurization decreased for catalysts which had strong acid sites. The conversion of DBT over NA catalyst was higher than NH and NY catalysts.

  • PDF

CO Conversion Characteristics of WGS Catalysts for SEWGS System (SEWGS 시스템을 위한 WGS 촉매들의 CO 전환 특성)

  • Ryu, Hojung;Park, Jihye;Lee, Dongho;Park, Jaehyeon;Bae, Dalhee
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.2
    • /
    • pp.96-104
    • /
    • 2015
  • Reactivity of commercial WGS catalyst and four new catalysts(RMC-3, PC-73, PC-67SU, PC-59) manufactured with various compositions by Korea Electric Power Research Institute(KEPCO RI) were compared to select suitable WGS catalyst for SEWGS system. Steam/CO ratio, gas velocity, flow rates of syngas, and temperature were considered as operating variables. As a result, commercial catalyst showed the highest CO conversion and RMC-3 catalyst showed also high CO conversion. Therefore, commercial and RMC-3 catalysts were selected as applicable catalysts. However, PC-73 catalyst showed low CO conversion at low temperature($200^{\circ}C$) but showed good reactivity at high temperature($225{\sim}250^{\circ}C$), and therefore, PC-73 catalyst was selected as applicable catalyst for high temperature operation. Continuous operations up to 24 hours for those three catalysts(commercial, RMC-3, PC-73) were conducted to check reactivity decay of catalysts. All three catalysts maintained their original reactivity.

Oxidative Dimerization of Methane over Lead Aluminate Spinel Catalysts

  • 장종산;박상언
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.12
    • /
    • pp.1148-1152
    • /
    • 1995
  • Oxidative dimerization of methane to C2-hydrocarbons was performed over lead aluminate spinel catalysts. These spinel catalysts were prepared by co-precipitation, aerogel, and sol-gel methods. The active phase of lead aluminate oxides was found to be PbAl2O4 spinel. The activities of the catalysts were strongly dependent on the preparation method as well as the composition of PbAl2O4 phase. The proper oxygen mobility of PbAl2O4 spinel oxides appeared to be important to get high catalytic activity and selectivity for C2-hydrocarbon formation.

Supported nickel catalysts for the decomposition of hydrazine borane N2H4BH3

  • Cakanyildirim, Cetin;Demirci, Umit B.;Xu, Qiang;Miele, Philippe
    • Advances in Energy Research
    • /
    • v.1 no.1
    • /
    • pp.1-12
    • /
    • 2013
  • In this work, we present the catalytic dehydrogenation of hydrazine borane $N_2H_4BH_3$ (HB) using supported nickel catalysts at $50^{\circ}C$. In the presence of monometallic nickel catalysts, the dehydrogenation of HB is a one-step reaction consisting of the hydrolysis of the $BH_3$ group only. The challenge is to activate nickel to make it reactive towards the $N_2H_4$ moiety of HB. A set of 52 catalysts were prepared by using 2 supports ($Al_2O_3$ and $TiO_2$), 5 nickel precursors and 3 preparation methods. For the first time, we show that the supported nickel catalysts are able to dehydrogenate the $NH_3$ moiety of HB. In our experimental conditions, the best results were obtained with 20 wt% Ni-$Al_2O_3$ and 20 wt% Ni-$TiO_2$, with ca. 190 mL $H_2+N_2$ generated over a total theoretical volume of 283 mL, suggesting $H_2$ selectivity of 37 and 32%, respectively. Both catalysts were then characterized by EDX, XPS, and XRD. Our achievement is the first step forward and opens new perspectives for developing catalysts for the total dehydrogenation of HB.

Direct Methanol Synthesis by Partial Oxidation of Methane (메탄의 부분산화에 의한 메탄올 직접 합성)

  • Kim, Young-Kook;Lee, Kwang-Hyeok;Hahm, Hyun-Sik
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.4
    • /
    • pp.649-655
    • /
    • 2013
  • Methanol was directly produced by the partial oxidation of methane with perovskite and mixed oxide catalysts. Perovskite ($ABO_3$) catalysts were prepared by the malic acid method with changing A and B site components. Three-component mixed oxide catalysts that have Mo and Bi as a main component were prepared by the co-precipitation method. Among the perovskite catalysts, $SrCrO_3$ showed the highest methanol selectivity of 11% at $400^{\circ}C$. For the three-component mixed oxide catalysts, there were no remarkable changes in methane conversion. Among the mixed oxide catalysts, Mo-Bi-Cr mixed oxide catalyst showed the highest methanol selectivity of 15.3% at $400^{\circ}C$. The catalytic activity and methanol selectivity of the three-component mixed oxide catalysts were directly proportional to the surface area of the catalysts.

Recent Developments and Challenging issues of Solid Catalysts for Biodiesel Production (바이오디젤 생산용 고체 촉매의 개발 동향 및 과제)

  • Lee, Jin-Suk;Park, Soon-Chul
    • Korean Chemical Engineering Research
    • /
    • v.48 no.1
    • /
    • pp.10-15
    • /
    • 2010
  • Intensive works have been carried out to develop more efficient solid catalysts for biodiesel production from various feedstocks including refined oils and waste fats. Among many catalysts, metal oxides and ion exchange resins are the most intensively studied ones. With regard to metal oxide catalysts, major research activities have focused on the identification of the active compounds and their immobilizing methods on the supports. As metal oxide catalysts have strong thermal stability, they may be used in simultaneous transesterification and esterification of waste fats. However, ion exchange resin catalysts were mainly applied in the esterification of the free fatty acids in waste fats because of their lower thermal stability. For both solid catalysts, further works are needed to make them to be used in commercial process. Especially fast deactivation of the solid catalyst would be the most challenging problem.

Study on Effects of Ni/Al2O3 Catalysts Added with Mo on Durability Improvement in Steam Reforming Reactions (Mo를 첨가한 Ni/Al2O3 촉매의 수증기 개질반응에서의 내구성 증진 특성연구)

  • Won, Jong Min;Park, Gi Woo;Lee, Jin Woo;Hong, Sung Chang
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.560-567
    • /
    • 2016
  • In this study, we characterized steam reforming reactions and surface of $Ni/Al_2O_3$ catalysts. Ni-Mo based catalysts were prepared by loading Mo as the co-catalyst and reaction activities of the Ni-Mo based catalysts were compared with those of Ni-based catalysts. Through the $H_2$-TPR and XPS analysis it was confirmed that this characteristic efficiency. $O_2$-TPO analysis was performed to examine the deposition characteristics, bonding structures and evaporation characteristics of carbon deposited on the surface of catalysts after long run experiments were performed for steam reforming reactions. As the results, it was found that durability was improved in Ni-Mo based catalysts inhibiting formation of graphitic carbon species which reduced reaction activities of the catalysts by strongly interacting with Ni in the steam reforming reaction.

Utilization of Spent Catalysts for the Removal of VOCs (휘발성 유기화합물 제거를 위한 폐 촉매의 이용)

  • Kim, Sang Chai;Shim, Wang Geun
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.303-313
    • /
    • 2007
  • Various commercial catalysts used in chemical related applications have been disposed as an industrial waste when the catalytic activity of catalysts is not good enough to achieve an optimum yield. In addition, the amount of disposed three way catalysts (TWC) has been continuously increased. Considering the physicochemical, environmental, and economical characteristics, the deactivated spent catalysts can be treated in several alternative ways such as regeneration, recycling, and disposal. In view of the environmental and economical matters, the spent catalyst should be regenerated and used for the various purposes, although its activity is not as good as a fresh catalyst. On the other hand, spent catalysts containing noble and metal oxides can be applicable for the catalytic oxidation of volatile organic compounds (VOCs) by applying the proper treatment method. Therefore in this review the quantity of the spent catalysts and the available regeneration methods for the spent catalysts are briefly summarized and especially the proper regeneration method for applying the catalytic oxidation of VOCs and its results are introduced.