• Title/Summary/Keyword: cataclastic zone

Search Result 6, Processing Time 0.019 seconds

Formation Processes of Fault Gouges and their K-Ar Ages along the Dongnae Fault (동래단층 지역 단층비지의 생성과정과 K-Ar 연령)

  • 장태우;추창오
    • The Journal of Engineering Geology
    • /
    • v.8 no.2
    • /
    • pp.175-188
    • /
    • 1998
  • This paper describes the internal structures and K-Ar ages of fault gouges collected from the Dongnae fault zone. This fault zone is internally zoned and occurs in the multiple fault cores. A fault core consists of thin gouge and narrow cataclastic zones that are bounded by a much thicker damage zone. Intensity of deformation and alteration increases from damage zone through cataclastic zone to gouge zone. It is thought that cataclasis of brittle deformation was the dominant strain-accomodation mechanism in the early stage of deformation to form the gouge zone and that crushed materials in the regions of maximum localization of fault slip subsequently moved by cataclastic flow. Deformation mechanism drastically changed from brittle processes to fluid-assisted flow along the gouge zone as the high porosity and permeability of pulverzied materials during faulting facilitated the influx of the hydrothermal fluids. Subsequently, the fluids reacted with gouge materials to form clay minerals. Fracturing and alteration could have repeatedly taken place in the gouge zone by elevated fluid pressures generated from the reduction of pore volume due to the formation of clay minerals and precipitation of other materials. XRD analysis revealed that the most common clay minerals of the gouge zones are illite and smectite with minor zeolite and kaolinite. Most of illites are composed of 1Md polytype, indicating the products of hydrothermal alteration. The major activities of the Dongnae fault can be divided into two periods based upon K-Ar age data of the fault gouges : 51.4∼57.5Ma and 40.3∼43.6Ma. Judging from the enviromental condition of clay mineral formation, it is inferred that the hydrothermal alteration of older period occured at higher temperature than that of younger period.

  • PDF

The Widening of Fault Gouge Zone: An Example from Yangbuk-myeon, Gyeongju city, Korea (단층비지대의 성장: 경주시 양북면 부근의 사례)

  • Chang, Tae-Woo;Jang, Yun-Deuk
    • The Journal of Engineering Geology
    • /
    • v.18 no.2
    • /
    • pp.145-152
    • /
    • 2008
  • A fault gouge zone which is about 25cm thick crops out along a small valley in Yangbuk-myeon, Gyeongju city. It is divided into greenish brown gouge and bluish gray gouge by color. Under the microscope, the gouges have a lot of porphyroclasts composed of old gouge fragments, quartz, feldspar and iron minerals. Clay minerals are abundant in matrix, defining strikingly P foliation by preferred orientation. Microstructural differences between bluish pay gouge and greenish brown gouge are as follows: greenish brown gouge compared to bluish gray gouge is (1) rich in clay minerals, (2) small in size and number of porphyroclasts, and (3) plentiful in iron minerals which are mostly hematites, while chiefly pyrites in bluish gray gouge. Hematites are considered to be altered from pyrites in the early-formed greenish brown gouge under the influence of hydrothermal fluids accompanied during the formation of bluish gray gouge that also precipitated pyrites. It is believed that the fault core including bluish gray gouge zone and greenish brown gouge zone was formed by progressive cataclastic flow. In the first stage the fault core initiates from damage zone of early faulting. In the second stage damage zone actively transforms into breccia zone by repeated fracturing. The third stage includes greenish brown (old) gouge formation in the center of the fault core mainly by particle grinding. In the third stage further deformation leads to the formation of new (bluish gray) gouge zone while old gouge zone undergoes strain hardening. Consequently, the whole gouge zone in the core widens.

A Report for the Quaternary Gaegok 6 Fault Developed in the Mid-eastern Part of Ulsan Fault Zone, Korea (울산단층대 중동부에 발달하는 제4기 개곡 6단층에 대한 보고)

  • Ryoo, Chung-Ryul
    • Economic and Environmental Geology
    • /
    • v.42 no.6
    • /
    • pp.635-643
    • /
    • 2009
  • In this paper, a Quaternary fault is described, which is developed in the mid-eastern part of Ulsan Fault Zone, near the southern Gaegok-ri, Oedong-eub, Gyeongju, Korea. The Gaegok 6 fault is developed along the contact between Early Tertiary granite and Quaternary gravel deposit overlying unconformably the granite. The fault strikes $N02^{\circ}{\sim}22^{\circ}E$ and dips $45^{\circ}{\sim}80^{\circ}$ to the west. This fault has a 30~50 cm wide cataclastic shear zone with gouge zone, mixed with Quaternary sediments and fault breccia of granite. In the main Quaternary fault plane, the orientation of striation is $17^{\circ}$, $356^{\circ}$, indicating a dextral strike-slip faulting with some normal component. There is another striation ($78^{\circ}$, $278^{\circ}$ and $43^{\circ}$, $270^{\circ}$) with reverse-slip sense, developed on the subsidiary plane which cuts the main Quaternary fault plane. In brief, the fault has been developed between the granite in the western part and the Quaternary gravel deposit in the eastern part. The western block of fault is uplifted. The striations and movement senses of faults indicate multiple compressional stages in this region. The fault has a similar orientation, westward dipping geometric pattern, and reverse sensed kinematic pattern with Gaegok 1 fault developed in the north. Thus, the Gaegok 6 fault is probably a southern extension of Gaegok 1 fault.

Correlation Analysis between Weight Ratio and Shear Strength of Fault Materials using Multiple Regression Analysis (다중회귀분석을 이용한 단층물질의 무게비와 전단강도의 상관성 분석)

  • Moon, Seong-Woo;Yun, Hyun-Soek;Kim, Woo-Seok;Na, Jong-Hwa;Kim, Chang-Yong;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.24 no.3
    • /
    • pp.397-409
    • /
    • 2014
  • The appearance of faults during tunnel construction is often difficult to predict in terms of strike, dip, scale, and strength, even though this information is essential in determining the strength of the surrounding rock mass. However, the strength and rock mass classification of fault zones are generally determined empirically on the construction site. In this study, 109 specimens were collected from fault of nine area throughout Korea, and direct shear tests were conducted and the particle distribution was analyzed to better characterize the fault zones. Six multiple regression models were established, using 97 of the specimens, to analyze the correlation between the shear strengths and weight rations of these fault materials. A verification of the six models, using the remaining 12 specimens, shows that in all of the models the coefficient of determination yielded $R^2{\geq}0.60$, with two models yielding $R^2{\geq}0.69$. These results provide useful information for determining the shear strength of fault materials in future studies.

Internal Structure and Movement History of the Keumwang Fault (금왕단층의 내부구조 및 단층발달사)

  • Kim, Man-Jae;Lee, Hee-Kwon
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.211-230
    • /
    • 2016
  • Detailed mapping along the Keumwang fault reveals a complex history of multiple brittle reactivations following late Jurassic and early Cretaceous ductile shearing. The fault core consists of a 10~50 m thick fault gouge layer bounded by a 30~100 m thick damaged zone. The Pre-cambrian gneiss and Jurassic granite underwent at least six distinct stages of fault movements based on deformation environment, time and mechanism. Each stage characterized by fault kinematics and dynamics at different deformation environment. Stage 1 generated mylonite series along the Keumwang shear zone by sinistral ductile shearing during late Jurassic and early Cretaceous. Stage 2 was a mostly brittle event generating cataclasite series superimposed on the mylonite series of the Keumwang shear zone. The roundness of pophyroclastes and the amount of matrix increase from host rocks to ultracataclasite indicating stronger cataclastic flow toward the fault core. At stage 3, fault gouge layer superimposed on the cataclasite generated during stage 2 and the sedimentary basins (Umsung and Pungam) formed along the fault by sinistral strike-slip movement. Fragments of older cataclasite suspended in the fault gouge suggest extensive reworking of fault rocks at brittle deformation environments. At stage 4, systematic en-echelon folds, joints and faults were formed in the sedimentary basins by sinistral strike-slip reactivation of the Keumwang fault. Most of the shearing is accommodated by slip along foliations and on discrete shear surfaces, while shear deformation tends to be relatively uniformly distributed within the fault damage zone developed in the mudrocks in the sedimentary basins. Fine-grained andesitic rocks intruded during stage 4. Stage 5 dextral strike-slip activity produced shear planes and bands in the andesitic rocks. ESR(Electron Spin Resonance) dates of fault gouge show temporal clustering within active period and migrating along the strike of the Keumwang fault during the stage 6 at the Quaternary period.

Estimation of Volume Change and Fluid-Rock Ratio of Gouges in Quaternary Faults, the Eastern Blocks of the Ulsan Fault, Korea (울산단층 동부지역 제4기단층 비지대의 체적변화와 유체-암석비에 대한 고찰)

  • Chang Tae-Woo;Chae Yeon-Zoon;Choo Chang-Oh
    • The Journal of Engineering Geology
    • /
    • v.15 no.3
    • /
    • pp.349-363
    • /
    • 2005
  • Many Quaternary faults are recognized as thin gouge and narrow cataclastic zone juxtaposing the Bulguksa granite and Quaternary deposit bed in the eastern block of the Using Fault, Korea: Gaegok 1, Caegok 2, Singye, Madong Wonwonsa and Jinhyeon faults. This study was performed to calculate chemical change, volume change, silica loss and fluid-rock ratio taken place in gouge zones of these Quaternary faults using XRF, XRD, EPMA. The chemical compositions of fault rocks reveal that the fault gouges are depleted in $SiO_2,\;Na_2\;O,and\;K_2O$ and enriched in $Al_2O_3,\;Fe_2O_3,\;P_2O_5,\;MgO,\;MnO,\;CaO,\;and\;LOI(H_2O+CO_2)$ relative to protoliths. The fact that there is enrichment of relatively immobile elements and depletion of the more soluble elements in the fault gouges relative to protoliths can be explained by fluid-assisted volume loss of $56\%$ for Caegok 1 fault, $22\%$ for Caegok 2 fault,$34\%$, for Singye fault, $8\%$ for Madong fault, $2\%$ for the Wonwonsa fault and $53\%$ for the linhyeon fault. Madong fault and Wonwonsa fault where ratios of the volume change, silica loss and fluid-rock are low might have acted as a closed system for fluid activity, whereas Caegok 1 fault and Jinhyeon fault with high ratios in those factors be an open system. The volumetric fluid-rock ratios range $10^2\sim10^4$ for all faults, being highest in Caegok 1 fault and Jinhyeon fault whose fluid activity was most significant.