• Title/Summary/Keyword: caspase-7

Search Result 449, Processing Time 0.026 seconds

인체 폐암 세포에 대한 와송 유래 에틸아세테이트 분획 생리 활성 물질의 세포사멸 유도 및 세포주기 억제 항암활성 (Anti-cancer activity of the ethylacetate fraction from Orostachys japonicus in A549 human lung cancer cells by induction of apoptosis and cell cycle arrest)

  • 권지혜;이동석;정은철;김현미;김수빈;류덕선
    • 예술인문사회 융합 멀티미디어 논문지
    • /
    • 제7권1호
    • /
    • pp.395-405
    • /
    • 2017
  • 와송 유래 에틸아세테이트(EtOAc) 분획물의 인체 폐암세포 A549에 대한 항암활성을 확인하기 위하여 본 연구를 수행하였다. 폐암 세포에 대한 세포 생존율을 측정하기 위하여 MTS assay를 수행한 결과, 농도 의존적으로 폐암세포 성장 억제효과를 보였다. 세포사멸 유도능을 확인하기 위하여 DAPI 핵염색을 통한 직접 육안관찰을 수행한 결과, EtOAc 분획물을 처리한 군에서 핵내 염색질 응축등의 세포사멸 지표가 관찰되었고, Annexin V-FITC를 이용하여 세포막에 노출된 phosphatidylinositol (PS)를 검출한 결과, 농도 의존적으로 초기 세포사멸 및 후기 세포사멸이 증가하였다. 세포사멸의 또다른 지표인 세포주기 억제능을 확인하기 위하여 G2/M기 관련 유전자인 CDK1, 4, cyclin B1, D1의 mRNA 발현정도를 RT-PCR을 이용하여 확인한 결과, 농도의존적으로 mRNA의 발현량이 현저히 감소하였으며, 세포사멸의 직접적 신호전달 표적 단백질인 p53, Bax, Bcl-2 및 pro-caspase-3등의 발현정도를 확인한 결과, p53과 Bax 단백질의 발현은 농도의존적으로 증가하였고, Bcl-2와 pro-caspase-3 단백질의 발현은 시간 및 농도의존적으로 감소하였다.

맥동 전자기장 처리에 의한 독소루비신 유도 유방암 세포 생존저하 촉진 (Pulsed Electromagnetic Field Enhances Doxorubicin-induced Reduction in the Viability of MCF-7 Breast Cancer Cells)

  • 우성훈;김윤석
    • 대한임상검사과학회지
    • /
    • 제56권1호
    • /
    • pp.73-84
    • /
    • 2024
  • 펄스 전자기장(pulsed electromagnetic field, PEMF)은 여러 항암제의 항암 효과를 향상시키는 것으로 알려져 있고 독소루비신(doxorubicin, DOX)은 유방암을 포함한 다양한 종류의 악성 종양을 치료하는 데 사용되는 항암제이다. 본 연구는 PEMF가 MCF-7 유방암 세포에 대한 DOX의 항암 효과 증진 여부를 조사하고 관련기전을 규명하기 위해 진행되었다. 본 연구팀은 DOX와 PEMF를 동시에 처리하면 DOX 단독 처리에 비해 MCF-7 유방암 세포의 생존율 감소가 더 커지는 것을 확인하였다. PEMF는 cyclin-dependent kinase 2의 인산화와 p53, p21, 사이클린 E2 및 polo like kinase 1의 단백질 발현에 영향을 주어 DOX 처리에 의한 G1 세포주기 정지를 더욱 증가시켰다. 또한, PEMF는 DOX 처리에 의한 Fas와 Bcl-2-associated X의 증가, myeloid leukemia 1과 survivin의 감소, 카스파제(caspase)-8/9/7의 활성 및 poly (adenosine diphosphate-ribose) polymerase 절단을 더욱 증가시켰다. 이러한 연구결과를 바탕으로, 본 연구팀은 PEMF는 DOX 처리에 의한 G1 세포주기 정지와 카스파제 의존적 세포자멸사를 더욱 증가시켜 DOX 처리에 의한 MCF-7 세포의 생존율 감소를 더욱 증진시킴을 확인할 수 있었다.

Molecular and Functional Characterization of Choline Transporter-Like Proteins in Esophageal Cancer Cells and Potential Therapeutic Targets

  • Nagashima, Fumiaki;Nishiyama, Ryohta;Iwao, Beniko;Kawai, Yuiko;Ishii, Chikanao;Yamanaka, Tsuyoshi;Uchino, Hiroyuki;Inazu, Masato
    • Biomolecules & Therapeutics
    • /
    • 제26권4호
    • /
    • pp.399-408
    • /
    • 2018
  • In this study, we examined the molecular and functional characterization of choline uptake in the human esophageal cancer cells. In addition, we examined the influence of various drugs on the transport of [$^3H$]choline, and explored the possible correlation between the inhibition of choline uptake and apoptotic cell death. We found that both choline transporter-like protein 1 (CTL1) and CTL2 mRNAs and proteins were highly expressed in esophageal cancer cell lines (KYSE series). CTL1 and CTL2 were located in the plasma membrane and mitochondria, respectively. Choline uptake was saturable and mediated by a single transport system, which is both $Na^+$-independent and pH-dependent. Choline uptake and cell viability were inhibited by various cationic drugs. Furthermore, a correlation analysis of the potencies of 47 drugs for the inhibition of choline uptake and cell viability showed a strong correlation. Choline uptake inhibitors and choline deficiency each inhibited cell viability and increased caspase-3/7 activity. We conclude that extracellular choline is mainly transported via a CTL1. The functional inhibition of CTL1 by cationic drugs could promote apoptotic cell death. Furthermore, CTL2 may be involved in choline uptake in mitochondria, which is the rate-limiting step in S-adenosylmethionine (SAM) synthesis and DNA methylation. Identification of this CTL1- and CTL2-mediated choline transport system provides a potential new target for esophageal cancer therapy.

Effects of Ethyl Pyruvate on Allodynia, TNF-${\alpha}$ Expression, and Apoptosis in the Dorsal Root Ganglion after Spinal Nerve Ligation Injury

  • Choi, Dae-Kee;Leem, Jeong-Gill;Shin, Jin-Woo;Suh, Jeong-Hun
    • The Korean Journal of Pain
    • /
    • 제25권4호
    • /
    • pp.213-220
    • /
    • 2012
  • Background: It has been demonstrated that the expression of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) and apoptotic cell death in the dorsal root ganglion (DRG) following spinal nerve constriction injury play a role in the initiation and continuation of hyperalgesia and allodynia. The present study was designed to investigate the effects of ethyl pyruvate (EP) on mechanical and cold allodynia, TNF-${\alpha}$ expression, and apoptosis in DRG after spinal nerve ligation injury. Methods: Rats were divided into 3 groups: control, pre-EP, and post-EP. EP (50 mg/kg) was intraperitoneally injected 30 minutes before (pre-EP) or after (post-EP) surgery. Behavioral tests to determine mechanical and cold allodynia were conducted before surgery and 4 and 7 days after surgery. Seven days after surgery, TNF-${\alpha}$ protein levels in DRG were evaluated by enzyme-linked immunosorbent assay, and DRG apoptosis was determined by immunohistochemical detection of activated caspase-3. Results: Treatment with EP significantly reduced mechanical and cold allodynia following spinal nerve ligation injury. TNF-${\alpha}$ protein levels in the pre-EP ($4.7{\pm}1.2$ pg/200 ${\mu}g$; P < 0.001) and post-EP ($6.4{\pm}1.8$ pg/200 ${\mu}g$; P < 0.001) groups were 2-3 times lower than the control group ($14.4{\pm}1.2$ pg/200 ${\mu}g$). The percentages of neurons and satellite cells that co-localized with caspase-3 were also significantly lower in the pre-EP and post-EP groups than the control group. Conclusions: These results demonstrate that EP has a strong anti-allodynic effect that acts through the inhibition of TNF-${\alpha}$ expression and apoptosis in DRG after spinal nerve ligation injury.

Bee venom inhibits the proliferation and migration of cervical-cancer cells in an HPV E6/E7-dependent manner

  • Kim, Da-Hyun;Lee, Hyun-Woo;Park, Hyun-Woo;Lee, Han-Woong;Chun, Kyung-Hee
    • BMB Reports
    • /
    • 제53권8호
    • /
    • pp.419-424
    • /
    • 2020
  • Bee venom (BV), secreted from the venom gland of the honey bee, contains several biological active compounds. BV has been widely used as a traditional medicine for treating human disease, including cancer. In this study, we have shown the molecular mechanism underlying the therapeutic effect of BV on cancer. Treatment with BV reduced the proliferation of cervical-cancer cells in a dose- and time-dependent manner. Interestingly, the killing effect of BV was specific to HPV-positive cervical-cancer cell lines, such as Caski and HeLa cells, and not to HPV-negative cervical-cancer cells (C33A). BV reduced the expression of HPV E6 and E7 at RNA and protein levels, leading to an increase in the expression of p53 and Rb in Caski and HeLa cells. Further, BV decreased the levels of cell-cycle proteins, such as cyclin A and B, and increased the levels of cell-cycle inhibitors, such as p21 and p27. BV significantly induced apoptosis and inhibited wound healing and migration of cervical-cancer cells. It also upregulated the expression of pro-apoptotic BAX and downregulated the expression of anti-apoptotic Bcl-2 and Bcl-XL. Cleavage of caspase-3, caspase-9, and PARP were also induced by BV treatment, whereas the phosphorylation of mitogenic signaling-related proteins, such as AKT, JNK, p38, and ERK, were downregulated. Our results indicate that BV has a therapeutic selectivity for HPV-positive malignant cells, so further clinical studies are needed to assess its clinical application.

Effects of Parafibromin Expression on the Phenotypes and Relevant Mechanisms in the DLD-1 Colon Carcinoma Cell Line

  • Zhao, Shuang;Sun, Hong-Zhi;Zhu, Shi-Tu;Lu, Hang;Niu, Zhe-Feng;Guo, Wen-Feng;Takano, Yasuo;Zheng, Hua-Chuan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권7호
    • /
    • pp.4249-4254
    • /
    • 2013
  • Background: Parafibromin is a protein encoded by the HRPT2 (hyperparathyroidism 2) oncosuppressor gene and its down-regulated expression is involved in pathogenesis of parathyroid, breast, gastric and colorectal carcinomas. This study aimed to clarify the effects of parafibromin expression on the phenotypes and relevant mechanisms of DLD-1 colon carcinoma cells. Methods: DLD-1 cells transfected with a parafibromin-expressing plasmid were subjected to examination of phenotype, including proliferation, differentiation, apoptosis, migration and invasion. Phenotype-related proteins were measured by Western blot. Parafibromin and ki-67 expression was detected by immunohistochemistry on tissue microarrays. Results: The transfectants showed higher proliferation by CCK-8, better differentiation by electron microscopy and ALP activity and more apoptotic resistance to cisplatin by DNA fragmentation than controls. There was no difference in early apoptosis by annexin V, capase-3 activity, migration and invasion between DLD-1 cells and their transfectants. Ectopic parafibromin expression resulted in down-regulated expression of smad4, MEKK, GRP94, GRP78, $GSK3{\beta}$-ser9, and Caspase-9. However, no difference was detectable in caspase-12 and -8 expression. A positive relationship was noted between parafibromin and ki-67 expression in colorectal carcinoma. Conclusions: Parafibromin overexpression could promote cell proliferation, apoptotic resistance, and differentiation of DLD-1 cells.

LY294002 Induces G0/G1 Cell Cycle Arrest and Apoptosis of Cancer Stem-like Cells from Human Osteosarcoma Via Down-regulation of PI3K Activity

  • Gong, Chen;Liao, Hui;Wang, Jiang;Lin, Yang;Qi, Jun;Qin, Liang;Tian, Lin-Qiang;Guo, Feng-Jing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권7호
    • /
    • pp.3103-3107
    • /
    • 2012
  • Osteosarcoma, the most common primary mesenchymal malignant tumor, usually has bad prognosis in man, with cancer stem-like cells (CSCs) considered to play a critical role in tumorigenesis and drug-resistance. It is known that phosphatidylinositol 3-kinase (PI3K) is involved in regulation of tumor cell fates, such as proliferation, cell cycling, survival and apoptosis. Whether and how PI3K and inhibitors might cooperate in human osteosarcoma CSCs is still unknown. We therefore evaluated the effects of LY294002, a PI3K inhibitor, on the cell cycle and apoptosis of osteosarcoma CSCs in vitro. LY294002 prevented phosphorylation of protein kinase B (PKB/Akt) by inhibition of PI3K phosphorylation activity, thereby inducing G0/G1 cell cycle arrest and apoptosis in osteosarcoma CSCs. Further studies also demonstrated that apoptosis induction by LY294002 is accompanied by activation of caspase-9, caspase-3 and PARP, which are involved in the mitochondrial apoptosis pathway. Therefore, our results indicate PI3K inhibitors may represent a potential strategy for managing human osteosarcoma via affecting CSCs.

Histone Deacetylase Inhibitor Trichostatin A Enhances Antitumor Effects of Docetaxel or Erlotinib in A549 Cell Line

  • Zhang, Qun-Cheng;Jiang, Shu-Juan;Zhang, Song;Ma, Xiao-Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권7호
    • /
    • pp.3471-3476
    • /
    • 2012
  • Background and Objective: Histone deacetylase (HDAC) inhibitors represent a promising class of potential anticancer agents for treatment of human malignancies. In this study, we investigated the effect of trichostatin A (TSA), one such HDAC inhibitor, in combination with docetaxel (TXT), a cytotoxic chemotherapy agent or erlotinib, a novel molecular target therapy drug, on lung cancer A549 cells. Methods: A549 cells were treated with TXT, erlotinib alone or in combination with TSA, respectively. Cell viability, apoptosis, and cell cycle distribution were evaluated using MTT (3- (4, 5-dimethylthiazol-2-yl) -2, 5-diphenyltetrazolium bromide) assay, Hochst33258 staining and flow cytometry. Moreover, immunofluorescent staining and Western blot analysis were employed to examine alterations of ${\alpha}$-tubulin, heat shock protein 90 (hsp90), epidermal growth factor receptor (EGFR), and caspase-3 in response to the different exogenous stimuli. Results: Compared with single-agent treatment, co-treatment of A549 cells with TSA/TXT or TSA/erlotinib synergistically inhibited cell proliferation, induced apoptosis, and caused cell cycle delay at the $G_2/M$ transition. Treatment with TSA/TXT or TSA/erlotinib led to a significant increase of cleaved caspase-3 expression, also resulting in elevated acetylation of ${\alpha}$-tubulin or hsp90 and decreased expression of EGFR, which was negatively associated with the level of acetylated hsp90. Conclusions: Synergistic anti-tumor effects are observed between TXT or erlotinib and TSA on lung cancer cells. Such combinations may provide a more effective strategy for treating human lung cancer.

Harmal Extract Induces Apoptosis of HCT116 Human Colon Cancer Cells, Mediated by Inhibition of Nuclear Factor-κB and Activator Protein-1 Signaling Pathways and Induction of Cytoprotective Genes

  • Elkady, Ayman I;Hussein, Rania A;El-Assouli, Sufian M
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권4호
    • /
    • pp.1947-1959
    • /
    • 2016
  • Background: Colorectal cancer (CRC) is a major cause of morbidity and mortality, being the second most common type of cancer worldwide in both men and women. It accounts yearly for approximately 9% of all new cases of cancers. Furthermore, the current chemotherapeutic regimens seem unsatisfactory, so that exploration of novel therapeutic modalities is needed. The present study was undertaken to investigate the inhibitory effects of a crude alkaloid extract (CAERS) of a medicinal herb, Rhazya stricta, on proliferation of CRC HCT116 cells and to elucidate mechanisms of action. To achieve these aims, we utilized MTT, comet, DNA laddering and gene reporter assays, along with Western blot and RT-PCR analyses. Results: We found that CAERS inhibited cell proliferation and induced apoptotic cell death in HCT116 cells. Hallmarks of morphological and biochemical signs of apoptosis were clearly evident. CAERS down-regulated DNA-binding and transcriptional activities of NF-${\kappa}B$ and AP-1 proteins, while up-regulating expression of the Nrf-2 protein. It also down-regulated expression levels of the ERK MAPK, Bcl-2, cyclin D1, CDK-4, survivin and VEGF and up-regulated levels of Bax, caspase-3/7 and -9, p53, p21, Nrf-2. Markedly, it promoted mRNA expression levels of cytoprotective genes including the hemeoxygenase-1, NAD(P)H quinine oxidoreductase 1 and UDP-glucuronyltransferase. Conclusions: These findings indicate that CAERS exerts antiproliferative action on CRC cells through induction of apoptotic mechanisms, and suggest CAERS could be a promising agent for studying and developing novel chemotherapeutic agents aimed at novel molecular targets for the treatment of CRC.

Zinc Oxide Nanoparticles Exhibit Both Cyclooxygenase- and Lipoxygenase-Mediated Apoptosis in Human Bone Marrow-Derived Mesenchymal Stem Cells

  • Kim, Dong-Yung;Kim, Jun-Hyung;Lee, Jae-Chul;Won, Moo-Ho;Yang, Se-Ran;Kim, Hyoung-Chun;Wie, Myung-Bok
    • Toxicological Research
    • /
    • 제35권1호
    • /
    • pp.83-91
    • /
    • 2019
  • Nanoparticles (NPs) have been recognized as both useful tools and potentially toxic materials in various industrial and medicinal fields. Previously, we found that zinc oxide (ZnO) NPs that are neurotoxic to human dopaminergic neuroblastoma SH-SY5Y cells are mediated by lipoxygenase (LOX), not cyclooxygenase-2 (COX-2). Here, we examined whether human bone marrow-derived mesenchymal stem cells (MSCs), which are different from neuroblastoma cells, might exhibit COX-2- and/or LOX-dependent cytotoxicity of ZnO NPs. Additionally, changes in annexin V expression, caspase-3/7 activity, and mitochondrial membrane potential (MMP) induced by ZnO NPs and ZnO were compared at 12 hr and 24 hr after exposure using flow cytometry. Cytotoxicity was measured based on lactate dehydrogenase activity and confirmed by trypan blue staining. Rescue studies were executed using zinc or iron chelators. ZnO NPs and ZnO showed similar dose-dependent and significant cytotoxic effects at concentrations ${\geq}15{\mu}g/mL$, in accordance with annexin V expression, caspase-3/7 activity, and MMP results. Human MSCs exhibited both COX-2 and LOX-mediated cytotoxicity after exposure to ZnO NPs, which was different from human neuroblastoma cells. Zinc and iron chelators significantly attenuated ZnO NPs-induced toxicity. Conclusively, these results suggest that ZnO NPs exhibit both COX-2- and LOX-mediated apoptosis by the participation of mitochondrial dysfunction in human MSC cultures.