• Title/Summary/Keyword: caspase 8 mutation in cancer

Search Result 5, Processing Time 0.018 seconds

Mutation Analysis of the Dimer Forming Domain of the Caspase 8 Gene in Oral Submucous Fibrosis and Squamous Cell Carcinomas

  • Menon, Uthara;Poongodi, V;Raghuram, Pitty Hari;Ashokan, Kannan;Govindarajan, Giri Valanthan Veda;Ramanathan, Arvind
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.11
    • /
    • pp.4589-4592
    • /
    • 2015
  • Background: Missense and frame-shift mutations within the dimer forming domain of the caspase 8 gene have been identified in several cancers. However, the genetic status of this region in precancerous lesions, like oral submucous fibrosis (OSMF), and well differentiated oral squamous cell carcinomas (OSCCs) in patients from southern region of India is not known, and hence the present study was designed to address this issue. Materials and Methods: Genomic DNA isolated from biopsy tissues of thirty one oral submucous fibrosis and twenty five OSCC samples were subjected to PCR amplification with intronic primers flanking exon 7 of the caspase 8 gene. The PCR amplicons were subsequently subjected to direct sequencing to elucidate the status of mutation. Results: Sequence analysis identified a frame-shift and a novel missense mutation in two out of twenty five OSCC samples. The frame-shift mutation was due to a two base pair deletion (c.1225_1226delTG), while the missense mutation was due to substitution of wild type cysteine residue with phenylalanine at codon 426 (C426F). The missense mutation, however, was found to be heterozygous as the wild type C426C codon was also present. None of the OSMF samples carried mutations. Conclusions: The identification of mutations in OSCC lesions but not OSMF suggests that dimer forming domain mutations in caspase 8 may be limited to malignant lesions. The absence of mutations in OSMF also suggests that the samples analyzed in the present study may not have acquired transforming potential. To the best of our knowledge this is the first study to have explored and identified frame-shift and novel missense mutations in OSCC tissue samples.

Induction of Tumor Suppressor Gene p53-dependent Apoptosis by Sanguinarine in HCT116 Human Colorectal Cancer Cells (결장암세포에서 sanguinarine에 의한 종양억제 유전자 p53 의존적 apoptosis 유도)

  • Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.31 no.4
    • /
    • pp.400-409
    • /
    • 2021
  • Sanguinarine, a natural benzophenanthridine alkaloid, has been considered a potential therapeutic target for the treatment of cancer because it can induce apoptosis in human cancer cells; however, the underlying mechanisms of action still remain unclear. Tumor suppressor p53 deletion or mutation is an important reason for the resistance of colorectal cancer cells to anticancer agents. Therefore, in the present study, the role of p53 during apoptosis induced by sanguinarine was investigated in p53wild type (WT, p53+/+) and p53null (p53+/+) HCT116 colon carcinoma cells. Sanguinarine significantly caused greater reductions in cell viability in HCT116 (p53+/+) cells than in HCT116 (p53-/-) cells. Consistently, sanguinarine promoted more DNA damage and apoptosis in HCT116 (p53+/+) cells than in HCT116 (p53-/-) cells while increasing the expression of p53 and cyclin-dependent kinase inhibitor p21WAF1/CIP1. Sanguinarine increased the activity of caspase-8 and caspase-9, which are involved in the initiation of extrinsic and intrinsic apoptosis pathways, respectively, and it activated caspase-3, a typical effect caspase, in HCT116 (p53+/+) cells. Sanguinarine also increased the generation of reactive oxygen species (ROS), and the Bax/Bcl-2 ratio, while destroying the integrity of mitochondria in HCT116 (p53+/+) cells, but not in HCT116 (p53-/-) cells. Overall, the results indicate that sanguinarine induced p53-dependent apoptosis through ROS-mediated activation of extrinsic and intrinsic apoptotic pathways in HCT116 colorectal cancer cells.

BRCA1 Gene Mutations and Influence of Chemotherapy on Autophagy and Apoptotic Mechanisms in Egyptian Breast Cancer Patients

  • Abdel-Mohsen, Mohamed Ahmed;Ahmed, Omiama Ali;El-Kerm, Yasser Mostafa
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.3
    • /
    • pp.1285-1292
    • /
    • 2016
  • Background: It is well established that mutations in the BRCA1 gene are a major risk factor for breast cancer. Induction of cancer cell death and inhibition of survival are the main principles of cancer therapy. In this context, autophagy may have dual roles in cancer, acting on the one hand as a tumor suppressor and on the other as a mechanism of cell survival that can promote the growth of established tumors. Therefore, understanding the role of autophagy in cancer treatment is critical. Moreover, defects in apoptosis, programmed cell death, may lead to increased resistance to chemotherapy. Purpose: The aim of the present study was to detect BRCA1 gene mutations in order to throw more light on their roles as risk factors for breast cancer in Egypt. Secondly the role of autophagy and apoptosis in determining response to a fluorouracil, doxorubicin, cyclophosphamide (FAC) regimen was investigated. Materials and Methods: Forty-five female breast cancer cases and thirty apparently healthy females were enrolled in the present study. Serum levels of autophagic biomarkers, Beclin 1 and LC3 as well as the serum levels of apoptosis biomarkers Bcl-2 and Caspase-3 were measured before and after chemotherapy. Results: BRCA1 mutations were found in 5 (16.7%) and 44 (99.8%) of the controls and cancer patients, the most frequent being 5382insC followed by C61G and 185 delAG. The results revealed that chemotherapy caused elevation in serum concentration levels of the autophagic biomarkers (Beclin 1 and LC3). This elevation was associated with a significant decrease in serum concentration levels of Bcl-2 and significant increase in caspase-3 concentration levels (apoptotic markers). Conclusions: The results of the present study indicate a very high level of BRCA mutations in breast cancer cases in Egypt and point to involvement of autophagic and apoptotic machinery activation in response to FAC chemotherapy.

Apoptosis-inducing Effect of Fructus Trichosanthis in HL-60 Leukemic Cells (백혈병 세포주 HL-60에서 과루실 세포고사 유도 효과)

  • Kwon Kang Beom;Kim Eun Kyung;Han Mi Jeong;Ryu Do Gon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.4
    • /
    • pp.903-907
    • /
    • 2005
  • Many naturally occurring plant extracts are studied for their beneficial effects for health and particularly on cancer. Apoptosis, or programmed cell death, occurs in both normal and pathological conditions, including cancer Dysregulation of apoptosis allows transformed cells to continually and uninhibitedly enter the cell cycle, thus perpetuating the sequence of mutation, genomic instability and, finally, oncogenesis. To investigate the apoptosis-inducing effect of the extract of Fructus Trichosanthis (EFT) on leukemic HL-60 cells and its mechanism, HL-60 cells in vitro in culture medium were given different doses of the extract. The inhibitory rate of cells were measured by microculture tetrazolium assay, cell apoptotic rate was detected by flow cytometry, morphology of cell apoptosis was observed by DAPI fluorescence staining, and the activations of caspases and PARP were detected using Western blotting analysis. The extract could activate the caspase-3 and caspase-8, induce PARP cleavage, inhibit growth of HL-60 cells, and cause apoptosis significantly The suppression was in dose-dependent manner. Marked morphological changes of cell apoptosis including condensation of chromatin and nuclear fragmentation were observed clearly by DAPI fluorescence staining especially. These results will provide strong laboratory evidence of EFT for clinical treatment of acute leukemia.

Apoptosis-inducing Effect of Fructus Trichosanthis in HL-60 Leukemic Cells (백혈병 세포주 HL-60에서 과루실(瓜蔞實)의 세포고사 유도 효과)

  • Kwon, Kang-Beom;Kim, Eun-Kyung;Han, Mi-Jeong;Ryu, Do-Gon
    • The Journal of Traditional Korean Medicine
    • /
    • v.15 no.1
    • /
    • pp.83-89
    • /
    • 2006
  • Many naturally occurring plant extracts are studied for their beneficial effects for health and particularly on cancer. Apoptosis, or programmed cell death, occurs in both normal and pathological conditions, including cancer. Dysregulation of apoptosis allows transformed cells to continually and uninhibitedly enter the cell cycle, thus perpetuating the sequence of mutation, genomic instability and, finally, oncogenesis. To investigate the apoptosis-Inducing effect of the extract of Fructus Trichosanthis (EFT) on leukemic HL-60 cells and its mechanism, HL-60 cells in vitro in culture medium were given different doses of the extract. The inhibitory rate of cells were measured by microculture tetrazolium assay, cell apoptotic rate was detected by flow cytometry, morphology of cell apoptosis was observed by DAPI fluorescence staining, and the activations of caspases and PARP were detected using Western blotting analysis. The extract could activate the caspase-3 and caspase-8, induce PARP cleavage, inhibit growth of HL-60 cells, and cause apoptosis significantly. The suppression was in dose-dependent manner. Marked morphological changes of cell apoptosis including condensation of chromatin and nuclear fragmentation were observed clearly by DAPI fluorescence staining especially. These results will provide strong laboratory evidence of EFT for clinical treatment of acute leukemia.

  • PDF