• 제목/요약/키워드: carrier transport mechanism

검색결과 64건 처리시간 0.041초

Investigation of Carrier Transport Mechanism in Schottky Type InAs/GaAs Quantum Dot Solar Cells

  • 김호성;류근환;양현덕;박민수;김상혁;송진동;최원준;박정호
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.319.1-319.1
    • /
    • 2014
  • We present the results on the indium tin oxide (ITO) Schottky barrier solar cells (SBSCs) with InAs quantum dots (QDs). The dependence of external quantum efficiency on the external bias voltage has been studied to anlayze carrier extraction through tunneling at room temperature.

  • PDF

광합성산물의 아포플라스트 체관부적재 기작 (Apoplastic Phloem Loading of Photoassimilate)

  • 김성문;허장현;한대성
    • 한국잡초학회지
    • /
    • 제17권4호
    • /
    • pp.345-361
    • /
    • 1997
  • Photoassimilates translocate from regions of carbohydrate synthensis(source) to regions of carbohydrate utilization or storage(sink). In the source, assimilate loads into the phloem for long-distance transport. Current evidence suggests that there are twig loading mechanisms : one involves assimilate transfer via the apoplasm and then load into the phloem by carrier-mediated proton-sucrose cotransport, while the other involves movement through the continuous symplastic connections between the mesophyll cells and the phloem. Inspite of problems associated with the interpretation of experiments, the evidence for apoplastic loading remains convincing because the apoplastic loading systems explains well the observed accumulation capacity arid the selectivity of assimilate uptake by tile phloem.

  • PDF

Involvement of a Novel Organic Cation Transporter in Paeonol Transport Across the Blood-Brain Barrier

  • Gyawali, Asmita;Krol, Sokhoeurn;Kang, Young-Sook
    • Biomolecules & Therapeutics
    • /
    • 제27권3호
    • /
    • pp.290-301
    • /
    • 2019
  • Paeonol has neuroprotective function, which could be useful for improving central nervous system disorder. The purpose of this study was to characterize the functional mechanism involved in brain transport of paeonol through blood-brain barrier (BBB). Brain transport of paeonol was characterized by internal carotid artery perfusion (ICAP), carotid artery single injection technique (brain uptake index, BUI) and intravenous (IV) injection technique in vivo. The transport mechanism of paeonol was examined using conditionally immortalized rat brain capillary endothelial cell line (TR-BBB) as an in vitro model of BBB. Brain volume of distribution (VD) of [$^3H$]paeonol in rat brain was about 6-fold higher than that of [$^{14}C$]sucrose, the vascular space marker of BBB. The uptake of [$^3H$]paeonol was concentration-dependent. Brain volume of distribution of paeonol and BUI as in vivo and inhibition of analog as in vitro studies presented significant reduction effect in the presence of unlabeled lipophilic compounds such as paeonol, imperatorin, diphenhydramine, pyrilamine, tramadol and ALC during the uptake of [$^3H$]paeonol. In addition, the uptake significantly decreased and increased at the acidic and alkaline pH in both extracellular and intracellular study, respectively. In the presence of metabolic inhibitor, the uptake reduced significantly but not affected by sodium free or membrane potential disruption. Similarly, paeonol uptake was not affected on OCTN2 or rPMAT siRNA transfection BBB cells. Interestingly. Paeonol is actively transported from the blood to brain across the BBB by a carrier mediated transporter system.

비정질 셀레늄 필름의 공명 비행시간 조사 (Time of Fight Resonace Investigation of Amorphous Selenium Films)

  • 박지군;박성광;이동길;최장용;안상호;은충기;남상희
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.501-504
    • /
    • 2001
  • We used time-of-flight method to analyze transport properties of charge carrier which is produced by X-ray exposure. It is the research of charge transport and specific property of trap that is performed in direct digital x-ray image receptor. But the results shows us different measurement value of electron and charge drift mobility and it is difficult to precise analysis about charge transport properties and trap mechanism. We measured transit time and drift mobility of charge carriers using time-of-flight method to evaluate the correlation of a-Se thickness change and electric field. We made a testing glass with a-Se of 400 ${\mu}m$ thickness on coming glass using thermoevaporation method and built Au electrode with 300nm, $2{\varphi}$ on both sides of a-Se, As a result of this experiment, electron and hole transit time was each $229.17{\mu}s$ and $8.73{\mu}s$ at $10V/{\mu}m$ electric field and Drift mobility was each $0.00174 cm^{2}/V{\cdot}s$, $0.04584cm^{2}/V{\cdot}s$.

  • PDF

비정질 셀레늄 필름의 공명 비행시간 조사 (Time of Flight Resonace Investigation of Amorphous Selenium Films)

  • 박지군;박성광;이동길;최장용;안상호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.501-504
    • /
    • 2001
  • We used time-of-flight method to analyse transport properties of charge carrier which is produced by X-ray exposure. It is the research of charge transport and specific property of trap that is performed in direct digital x-ray image receptor. But the results shows us different measurement value of electron and charge drift mobility and it is difficult to precise analysis about charge transport properties and trap mechanism. We measured transit time and drift mobility of charge carriers using time-of-fight method to evaluate the correlation of a-Se thickness change and electric field. We made a testing glass with a-Se of 470 ${\mu}{\textrm}{m}$ thickness on corning glass using thermoevaporation method and built Au electrode with 300nm, 2$\phi$ on both sides of a-Se. As a result of this experiment, electron and hole transit time was each 229.17 $\mu$s and 8.737 $\mu$s at 10V/${\mu}{\textrm}{m}$ electric field and Drift mobility was each 0.00174 $\textrm{cm}^2$/V.s, 0.04584 $\textrm{cm}^2$/V.s.

  • PDF

Oxidative Modification of Human Ceruloplasmin by Methylglyoxal: An in vitro study

  • Kang, Jung-Hoon
    • BMB Reports
    • /
    • 제39권3호
    • /
    • pp.335-338
    • /
    • 2006
  • Methylglyoxal (MG) is an endogenous physiological metabolite which is present in increased concentrations in diabetics. MG reacts with the amino acids of proteins to form advanced glycation end products. In this in vitro study, we investigated the effect of MG on the structure and function of ceruloplasmin (CP) a serum oxidase carrier of copper ions in the human. When CP was incubated with MG, the protein showed increased electrophoretic mobility which represented the aggregates at a high concentration of MG (100 mM). MG-mediated CP aggregation led to the loss of enzymatic activity and the release of copper ions from the protein. Radical scavengers and copper ion chelators significantly prevented CP aggregation. CP is an important protein that circulates in plasma as a major copper transport protein. It is suggested that oxidative damage of CP by MG may induce perturbations of the copper transport system and subsequently lead to harmful intracellular condition. The proposed mechanism, in part, may provide an explanation for the deterioration of organs in the diabetic patient.

Estimation of Electrical Parameters of OD Organic Semiconductor Diode from Measured I-V Characteristics

  • Moiz, Syed Abdul;Ahmed, Mansoor M.;Karimov, Kh. S.
    • ETRI Journal
    • /
    • 제27권3호
    • /
    • pp.319-325
    • /
    • 2005
  • In this paper the effect of temperature on the electrical properties of organic semiconductor disperse orange dye 25 (OD) have been examined. Thin films of OD have been deposited on $In_{2}O_{3}$ substrates using a centrifugal machine. DC current-voltage (I-V) characteristics of the fabricated devices $(Al/OD/In_{2}O_{3)$ have been evaluated at varying temperatures ranging from 40 to $60^{\circ}C$. A rectification behavior in these devices has been observed such that the rectifying ratio increases as a function of temperature. I-V characteristics observed in $Al/OD/In_{2}O_{3)$ devices have been classified as low temperature $({\leq} 50^{\circ}C)$ and high temperature characteristics (approximately $60^{\circ}C$). Low temperature characteristics have been explained on the basis of the charge transport mechanism associated with free carriers available in OD, whereas high temperature characteristics have been explained on the basis of the trapped space-charge-limited current. Different electrical parameters such as traps factor, free carrier density, trapped carrier density, trap density of states, and effective mobility have been determined from the observed temperature dependent I-V characteristics. It has been shown that the traps factor, effective mobility, and free carrier density increase with increasing values of temperature, whilst no significant change has been observed in the trap density of states.

  • PDF

암 모기 흡혈과정 가시화 (Visualization of blood sucking phenomena of a female mosquito)

  • 김보흠;이상준
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2007년도 추계학술대회
    • /
    • pp.114-115
    • /
    • 2007
  • As a carrier of malaria and sneak of blood, mosquitoes are regarded as an unpleasant insect. However, there are novel phenomena that happen inside a mosquito. Among them, we focused on the blood sucking function of a female mosquito. The main objective of this study was to investigate the mosquito's pumping mechanism in order to resolve the problem encountered when we inject or transport biologic fluids into a micro-chip. To analyze the pumping mechanism, we visualized the blood sucking process inside a female mosquito. Flow characteristics of blood flow in a proboscis were investigated experimentally using a micro-PIV velocity field measurement technique. The anatomical variation of head, thorax, abdomen which work as pumps and valves, was visualized using the syncrotron X-ray micro-imaging technique.

  • PDF

이차원 SnSe2 전자소재의 Cl 도핑에 따른 고온 전도 물성 고찰 (Study on the Change of Electrical Properties of two-dimensional SnSe2 Material via Cl doping under a High Temperature Condition)

  • 문승필;김성웅;손희상;김태완;이규형;이기문
    • 마이크로전자및패키징학회지
    • /
    • 제24권2호
    • /
    • pp.49-53
    • /
    • 2017
  • Cl 불순물 도핑에 따른 $SnSe_2$ 이차원 전자소재의 고온(300~450 K) 전도 물성 변화를 고찰하였다. 고상합성법을 통하여, 도핑이 없는 $SnSe_2$ 소재와 Cl이 도핑된 $SnSe_{1.994}Cl_{0.006}$ 소재를 합성하였으며, X선 회절 실험을 통하여, 두 재료 모두 불순물 없는 단일상이 형성되었음을 확인하였다. 비저항의 온도의존성 측정을 통하여, 전기 전도 mechanism이 Cl 도핑에 의해 hopping 전도에서 축퇴 전도로의 전이가 일어남을 관찰할 수 있었으며, 홀효과 측정을 통해 그러한 전도 mechanism의 전이가, Cl의 효과적인 donor 역할에 따른 자유전자의 농도 증가에서 기인한 것임을 확인하였다. 온도에 따른 전자이동도의 변화 분석을 통하여, 도핑이 없는 $SnSe_2$의 고온 전기 전도는 grain boundary 산란이 지배적인 영향을 미치는 반도체 전도 특성을 보이는 반면, Cl 도핑에 따라 grain boundary 산란 효과가 저하되는 금속 전도 특성을 보인다는 것을 알 수 있었다.

마크로고리 화합물을 운반체로 하는 액체막을 통한 이온의 운반에 관한 연구 (제1보). Dibenzo-18-Crown-6-(DBC)/$H_2O-CHCl_3-H_2O$계에서 칼륨이온의 운반 메카니즘 (The Ion Transport Phenomena through the Liquid Membrane with Macrocyclic Compound (I). Mechanism of Potassium Ion Transport through $H_2O-CHl_3-H_2O$ System with Dibenzo-18-Crown-6)

  • 윤창주;이심성;구창현;김시중
    • 대한화학회지
    • /
    • 제28권3호
    • /
    • pp.163-169
    • /
    • 1984
  • 칼륨이온이 dibenzo-18-crown-6(DBC)에 의해 $H_2O-CHl_3-H_2O$액체막을 통하여 운반되는 속도를 10가지 칼륨염의 농도를 변화시키면서 $25^{\circ}C$에서 측정하였다. 운반속도는 농도와 음이온의 특성에 크게 의존했으며 농도효과로 부터 피크르산칼륨의 경우에는 이온쌍 형성으로 인하여 1.0 ${\times}10^{-3}$M을 전후하여 각기 다른 양상을 보였다. 이온의 운반과정은 다단계 착물반응 및 확산과정에 의한 것으로 운반 메카니즘을 체계화하기 위해 비균질성 액체막의 각상에서 갖는 화학종의 에너지 장벽모델을 제시하였다. 또한 이를 음이온의 수화자유 에너지와의 관계를 비교함으로써 새로이 7단계 운반과정을 제시하고 그 운반 메카니즘을 고찰하였다.

  • PDF