• Title/Summary/Keyword: carrier gas

Search Result 631, Processing Time 0.023 seconds

A Study on the MOCVD $PbTiO_3$ Thin Films (MOCVD $PbTiO_3$ 박막의 특성에 관한 연구)

  • 송한상;최두진;유광수;정형진;김창은
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.2 no.2
    • /
    • pp.40-52
    • /
    • 1992
  • $PbTi0_3$ thin films were deposited at $550^{\circ}C$ by MOCVD method using titanium-iso-propoxide [$Ti(OC_3H_7)_4$] and tetra-ethyl-lead $[Pb(C_2H_5)_4]$as starting materials. In the present study, Ar and $O_2$were used as a carrier gas and a reaction gas, respectively, and the change of thickness and refractive index, Xray diffraction analysis, and CV characteristic measurements of the films were systematically investigated. As a result of CV characteristic analysis of the annealed $PbTiO_3$ thin films, it is assumed that the films interact with Si substrate at the interface, and X-ray diffraction patterns of the films show characteristic peaks for $PbTiO_3$ With increasing the annealing temperature and time, the thickness of the films tends to decrease but their refractive index increases.

  • PDF

Hydrogen Production Systems through Water Electrolysis (물 전기분해에 의한 수소제조 기술)

  • Hwang, Gab-Jin;Choi, Ho-Sang
    • Membrane Journal
    • /
    • v.27 no.6
    • /
    • pp.477-486
    • /
    • 2017
  • Hydrogen is one of energy storage systems, which could be transfer from electric energy to chemical energy or from chemical energy to electric energy, and is as an energy carrier. Water electrolysis is being investigating as one of the hydrogen production methods. Recently, water electrolysis receive attention for the element technology in PTG (power to gas) and PTL (power to liquid) system. In this paper, it was explained the principle and type for the water electrolysis, and recent research review for the alkaline water electrolysis.

A Study on the Deposition of Boron Phosphide at the Low Temperature using CVD Method and its Characteristics (CVD법을 이용한 보론 포스파이드의 저온 층착과 특성에 관한 연구)

  • 윤여철;김순영;박윤권;강재경;김철주
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.103-107
    • /
    • 2000
  • Boron Phosphide films were deposited on the glass substrate at the low temperature, 55$0^{\circ}C$, by the reaction of B$_2$H$_{6}$ with PH$_3$ using CVD. $N_2$ was employed as carrier gas. The optimal gas rates were 50 $m\ell$/min for B$_2$H$_{6}$, 50 $m\ell$/min for PH$_3$ $m\ell$/min and 1.5 $\ell$/min for $N_2$. To investigate the annealing effect, the films were annealed for 1hour, 3hours in $N_2$ambient at 55$0^{\circ}C$ and tested. The deposition rate was 1000$\AA$/min and the refractive index of film was 2.6. The measurement of X-RD shows that the films have the preferred orientation of (1 0 1) and the intensity of the peak for (1 0 1) orientation decreases according to the annealing time. The data of VIS spectrophotometer proved that the films are transparent in the visible range and the maximal transmittance increases according to the annealing time; 75.49% for as-deposited, 76.71% for 1hr-annealed and 86.4 % for 3hrs-annealed. The measurement of AFM shows that the average surface roughness increases according to the annealing time; 73$\AA$ for as-deposited, 88.9$\AA$ for 1hr-annealed and 220$\AA$ for 3hrs-annealed. Also, The data of the secondary electron emission rate(Υ) shows that the secondary electron emission rate increases according to the annealing time; 0.317 for 1hr-deposited, 0.357 for 1hr-annealed and 0.537 for 3hrs-annealed. And, The measurement of FT-IR that the characteristic of transmittance in the infrared range was stabilized through annealing.ing.

  • PDF

Study on Electron Temperature Diagnostic and the ITO Thin Film Characteristics of the Plasma Emission Intensity by the Oxygen Gas Flow (산소 유량별 플라즈마 방출광원 세기에 따른 전자온도 진단과 산화주석박막 특성연구)

  • Park, Hye Jin;Choi, Jin-Woo;Jo, Tae Hoon;Yun, Myoung Soo;Kwon, Gi-Chung
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.1
    • /
    • pp.92-97
    • /
    • 2016
  • The plasma has been used in various industrial fields of semiconductors, displays, transparent electrode and so on. Plasma diagnostics is critical to the uniform process and the product. We use the electron temperature of the various plasma parameters for the diagnosis of plasma. Generally, the range of the electron temperature which is used in a semiconductor process used the range of 1 eV to 10 eV. The difference of electron temperature of 0.5 eV has a influence in plasma process. The electron temperature can be measured by the electrical method and the optical method. Measurement of electron temperature for various gas flow rates was performed in DC-magnetron sputter and Inductively Coupled Plasma. The physical properties of the thin film were also determined by changing electron temperatures. The transmittance was measured using the integrating sphere, and wavelength range was measured at 300 ~ 1100 nm. We obtain the thin film of the mobility, resistivity and carrier concentration using the hall measurement system. As to the electron temperature increase, optical and electrical properties decrease. We determine it was influenced by the oxygen flow ratio and plasma.

Study on Fracture Behavior of Mild Steel Under Cryogenic Condition (연강(Mild Steel)의 극저온 파괴 거동에 대한 실험적 연구)

  • Choi, Sung Woong;Lee, Woo IL
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.6
    • /
    • pp.62-66
    • /
    • 2015
  • Considering for plants and structure under extreme conditions is required for the successful design, especially temperature and pressure. The ductile-brittle transition temperature (DBTT) for the materials under extreme condition needs to be considered. In this study, A-grade mild steel for the LNG carrier and offshore plant was examined by performing low-temperature Charpy V-notch (CVN) impact tests to investigate DBTT and the fracture toughness. The absorbed energy decreased gradually with the experimental temperature, which showed an upper-shelf energy region, lower shelf energy region, and transition temperature indicating DBTT. In addition, the fracture surface morphologies of the mild steels indicated ductile fractures at the upper-shelf energy level, with wide and large-sized dimples, whereas a brittle fracture surface, where was observed at the lower-shelf energy level, with both large and small cleavage facets. Based on the experimental results, ductile brittle transition temperature was estimated in about $-60^{\circ}C$.

A Study on the Physical Characteristics of III-V Compound Boron Phosphide using CVD (CVD를 이용해 증착한 III-V 화합물 보론 포스파이드의 물성분석에 관한 연구)

  • Hong, Kuen-Kee;Kim, Chul-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.332-335
    • /
    • 2004
  • Boron Phosphide films were deposited on(III) Si substrate at $650^{\circ}C$, by the reaction of $B_2H_6$ with $PH_3$ using CVD. $N_2$ was employed as carrier gas. The optimal gas rates were 20 ml/min for $B_2H_6$, 60 ml/min for $PH_3$ ml/min and $1{\ell}/min$ for $N_2$. The films were annealed for 1hour in $N_2$ ambient at $550^{\circ}C$ and measured. The measurement of AFM shows that the average surface roughness is each $10.108{\AA}$ and $29.626{\AA}$. So, we could know every commonplace thing. The measurement of XRD shows that the films have the preferred orientation of(1 0 1). From SEM images, we could see that Boron Phosphide is showed of a structure, which is grain size, which is grain boundary size. Also, the measurement of AES is shown the films have $B_{13}P_2$ Stoichiometry. From WDX See that ingredient is detected each Boron and Phosporus. So, we could see that deposited BP thin film. In this study, we obtained the BP thin film by deposited in atmosphere pressure, and known to applicate as microwave absorbtion material of BP thin film.

  • PDF

Plasma Effects on Nucleation of the RPCVD/MOCVD Copper Films

  • 이종현;이정환;손승현;박병남;배성찬;최시영
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.132-132
    • /
    • 2000
  • Cu는 Al에 비하여 낮은 저항(1.8 $\mu$$\Omega$-cm)과 높은 EM 저항성을 가지고 있어 미래의 고속 ULSI 배선물질로 그 중요성이 더욱 증가되고 있으며, 현재까지 많은 연구가 진행되고 있다. 따라서, 본 논문에서는 이러한 방법들을 고려하여 CVD Cu의 문제점인 낮은 성장률의 개선과 Cu 박막의 특성을 향상하고자 수소 플라즈마 공정을 이용하여 plasma 전처리가 초기 Cu 핵생성에 미치는 영향에 대하여 연구하였다. 본 실험에 사용된 장비는 Cu RPCVD/MOCVD이다. 초기 Cu 핵의 생성에 있어서의 수소 플라즈마의 효과를 조사하기 위하여 다음과 같은 3가지의 방법으로 행하였다. 첫 번째는 Cu 박막 형성에서 플라즈마를 사용하지 않은 방법, 두 번째는 플라즈마 전처리공정을 행한 뒤, Cu 박막 증착시 플라즈마는 사용하지 않은 방법, 세 번재는 플라즈마 전처리공저을 행한 뒤 Cu 증착시에도 플라즈마를 사용한 방법이다. 이 세가지 방법의 핵생성 차이를 분석하기 위해서 각각 10초, 20초, 40초 증착시킨 후 grain의 크기와 개수를 비교하였다. 또한 플라즈마의 power에 따른 Cu 핵생성율도 조사하였다. 수소 전처리동안 working pressure는 10분 동안 1 torr로 유지되었으며 substrate의 온도는 20$0^{\circ}C$, r.f.power는 100watt로 설정하였다. Cu RPCVD의 증착조건은 r.f.power는 10watt, substrate의 온도는 20$0^{\circ}C$, gas pressure는 1 torr, Ar carrier gas는 50sccm, hydrogen processing gas는 100sccm, bubbler 온도는 4$0^{\circ}C$, gas line의 온돈느 6$0^{\circ}C$, shower head의 온도는 $65^{\circ}C$로 설정하였다. 증착된 Cu 박막은 SEM, XRD, AFM를 통해 제작된 박막의 특성을 비교.분석하였다. 초기 plasma 처리를 한 경우에는 그림 1에서와 같이 현저히 증가한 초기 구리 입자들이 관측되었으며, 이는 도상 표면에 활성화된 catalytic site의 증가에 기인한다고 보여진다. 이러한 특성은 Cu films의 성장률을 향상시키고, 또한 voids를 줄여 전기적 성질 및 surface morphology를 향상시키는 것으로 나타났다.

  • PDF

Evaluation of Cryogenic Compressive Strength of Divinycell of NO 96-type LNG Insulation System (NO96타입 LNG 방열시스템 Divinycell의 극저온 압축 강도 평가)

  • Choe, Yeong-Rak;Kim, Jeong-Hyeon;Kim, Jong-Min;Park, Sungkyun;Park, Kang Hyun;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.5
    • /
    • pp.349-355
    • /
    • 2016
  • Divinycell, which functions as both insulation and a supporting structure, is generally applied in the NO96-type liquefied natural gas (LNG) insulation system. Polymer-material-based Divinycell, which has a high strength and low weight, has been widely used in the offshore, transportation, wind power generation, and civil engineering fields. In particular, this type of material receives attention as an insulation material because its thermal conductivity can be lowered depending on the ambient temperature. However, it is difficult to obtain research results for Divinycell, even though the component materials of the NO96-type LNG cargo containment system, such as 36% nickel steel (invar steel), plywood, perlite, and glass wool, have been extensively studied and reported. In the present study, temperature and strain-rate dependent compressive tests on Divinycell were performed. Both the quantitative experimental data and elastic recovery are discussed. Finally, the mechanical characteristics of Divinycell were compared to the results of polyurethane foam insulation material.

The Effect of Plasma Gas Composition on the Nanostructures and Optical Properties of TiO2 Films Prepared by Helicon-PECVD

  • Li, D.;Dai, S.;Goullet, A.;Granier, A.
    • Nano
    • /
    • v.13 no.10
    • /
    • pp.1850124.1-1850124.12
    • /
    • 2018
  • $TiO_2$ films were deposited from oxygen/titanium tetraisopropoxide (TTIP) plasmas at low temperature by Helicon-PECVD at floating potential ($V_f$) or substrate self-bias of -50 V. The influence of titanium precursor partial pressure on the morphology, nanostructure and optical properties was investigated. Low titanium partial pressure ([TTIP] < 0.013 Pa) was applied by controlling the TTIP flow rate which is introduced by its own vapor pressure, whereas higher titanium partial pressure was formed through increasing the flow rate by using a carrier gas (CG). Then the precursor partial pressures [TTIP+CG] = 0:027 Pa and 0.093 Pa were obtained. At $V_f$, all the films exhibit a columnar structure, but the degree of inhomogeneity is decreased with the precursor partial pressure. Phase transformation from anatase ([TTIP] < 0.013 Pa) to amorphous ([TTIP+CG] = 0:093 Pa) has been evidenced since the $O^+_2$ ion to neutral flux ratio in the plasma was decreased and more carbon contained in the film. However, in the case of -50 V, the related growth rate for different precursor partial pressures is slightly (~15%) decreased. The columnar morphology at [TTIP] < 0.013 Pa has been changed into a granular structure, but still homogeneous columns are observed for [TTIP+CG] = 0:027 Pa and 0.093 Pa. Rutile phase has been generated at [TTIP] < 0:013 Pa. Ellipsometry measurements were performed on the films deposited at -50 V; results show that the precursor addition from low to high levels leads to a decrease in refractive index.

Analysis of Shear Behavior and Fracture Characteristics of Plywood in Cryogenic Environment (극저온 환경 하 플라이우드의 전단 거동 및 파손 특성 분석)

  • Son, Young-Moo;Kim, Jeong-Dae;Oh, Hoon-Kyu;Kim, Yong-Tai;Park, Seong-Bo;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.394-399
    • /
    • 2019
  • Plywood is a laminated wood material where alternating layers are perpendicular to each other. It is used in a liquefied natural gas (LNG) carrier for an insulation system because it has excellent durability, a light weight, and high stiffness. An LNG cargo containment system (LNG CCS) is subjected to loads from gravity, sloshing impact, hydrostatic pressure, and thermal expansion. Shear forces are applied to an LNG CCS locally by these loads. For these reasons, the materials in an LNG CCS must have good mechanical performance. This study evaluated the shear behavior of plywood. This evaluation was conducted from room temperature ($25^{\circ}C$) to cryogenic temperature ($-163^{\circ}C$), which is the actual operating environment of an LNG storage tank. Based on the plywood used in an LNG storage tank, a shear test was conducted on specimens with thicknesses of 9 mm and 12 mm. Analyses were performed on how the temperature and thickness of the plywood affected the shear strength. Regardless of the thickness, the strength increased as the temperature decreased. The 9 mm thick plywood had greater strength than the 12 mm thick specimen, and this tendency became clearer as the temperature decreased.