• 제목/요약/키워드: carotovorum

검색결과 72건 처리시간 0.024초

Identification of Novel Bioactive Hexapeptides Against Phytopathogenic Bacteria Through Rapid Screening of a Synthetic Combinatorial Library

  • Choi, Jae-Hyuk;Moon, Eun-Pyo
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권8호
    • /
    • pp.792-802
    • /
    • 2009
  • Antimicrobial peptides (AMPs) are considered to be a promising alternative to conventional antibiotics for future generations. We identified four novel hexapeptides with antimicrobial activity: KCM11 (TWWRWW-$NH_2$), KCM12 (KWRWlW-$NH_2$), KCM21 (KWWWRW-$NH_2$), and KRS22 (WRWFIH-$NH_2$), through positional scanning of a synthetic peptide combinatorial library (PS-SCL). The ability of these peptides to inhibit the growth of a variety of bacteria and unicellular fungi was evaluated. KCM11 and KRS22 preferentially inhibited the normal growth of fungal strains, whereas KCM12 and KCM21 were more active against bacterial strains. Bactericidal activity was addressed in a clear zone assay against phytopathogenic bacteria, including Pectobacterium spp., Xanthomonas spp., Pseudomonas spp., etc. KCM21 showed the highest activity and was effective against a wide range of target organisms. Application of KCM21 with inoculation of Pectobacterium carotovorum subsp. carotovorum on detached cabbage leaves resulted in an immune phenotype or a significant reduction in symptom development, depending on the peptide concentration. Cytotoxicity of the four hexapeptides was evaluated in mouse and human epithelial cell lines using an MTT test. The results revealed a lack of cytotoxic effects.

Essential Oil Prepared from Cymbopogon citrates Exerted an Antimicrobial Activity Against Plant Pathogenic and Medical Microorganisms

  • Jeong, Mi-Ran;Park, Pyeong-Beom;Kim, Dae-Hyuk;Jang, Yong-Suk;Jeong, Han-Sol;Choi, Sang-Hoon
    • Mycobiology
    • /
    • 제37권1호
    • /
    • pp.48-52
    • /
    • 2009
  • Essential oils are mixtures of volatile, lipophilic compounds originating from plants. Some essential oils have useful biological activities including antimicrobial, spasmolytic, antiplasmodial, and insect-repelling activities. In this study, we tested the antimicrobial activity of essential oil prepared from the aromatic plant, Cymbopogon citrates, against three important plant pathogenic and medical microorganisms, Pectobacterium carotovorum, Colletotrichum gloeosporioides, and Aspergillus niger. It effectively inhibited the growth of the bacterium, Pectobacterium carotovorum, in a dose-dependent fashion, and 0.5% of the oil inhibited the growth of bacteria completely. Similarly, the essential oil inhibited the growth of plant pathogenic fungus, Colletotrichum gloeosporioides, and the addition of 1% of essential oil completely inhibited the growth of fungus even after 5 days of culture. Finally, it effectively inhibited the growth of the medically and industrially important fungal species, Aspergillus spp. These results suggest that the essential oil from Cymbopogon citrates may be an environmentally safe alternative to inhibit antimicrobial agents for various uses.

A Synergistic Effect of Chitosan and Lactic Acid Bacteria on the Control of Cruciferous Vegetable Diseases

  • Lin, Yu-Chen;Chung, Kuang-Ren;Huang, Jenn-Wen
    • The Plant Pathology Journal
    • /
    • 제36권2호
    • /
    • pp.157-169
    • /
    • 2020
  • Two lactic acid bacteria (LAB) designated J02 and J13 were recovered from fermented vegetables based on their ability to suppress soft rot disease caused by Pectobacterium carotovorum subsp. carotovorum (Pcc) on radish. J02 and J13 were identified as Lactobacillus pentosus and Leuconostoc fallax, respectively. The ability of J02 and J13 to suppress plant diseases is highly dependent on chitosan. LAB alone has no effect and chitosan alone has only a moderate effect on disease reduction. However, J02 or J13 broth cultures plus chitosan display a strong inhibitory effect against plant pathogens and significantly reduces disease severity. LAB strains after being cultured in fish surimi (agricultural waste) and glycerol or sucrose-containing medium and mixed with chitosan, reduce three cruciferous vegetable diseases, including cabbage black spot caused by Alternaria brassicicola, black rot caused by Xanthomonas campestris pv. campestris, and soft rot caused by Pcc. Experimental trials reveal that multiple applications are more effective than a single application. In-vitro assays also reveal the J02/chitosan mixture is antagonistic against Colletotrichum higginsianum, Sclerotium rolfsii, and Fusarium oxysporum f. sp. rapae, indicating a broad-spectrum activity of LAB/chitosan. Overall, our results indicate that a synergistic combination of LAB and chitosan offers a promising approach to biocontrol.

Water Extract from Spent Mushroom Substrate of Hericium erinaceus Suppresses Bacterial Wilt Disease of Tomato

  • Kwak, A Min;Min, Kyeong Jin;Lee, Sang Yeop;Kang, Hee Wan
    • Mycobiology
    • /
    • 제43권3호
    • /
    • pp.311-318
    • /
    • 2015
  • Culture filtrates of six different edible mushroom species were screened for antimicrobial activity against tomato wilt bacteria Ralstonia solanacearum B3. Hericium erinaceus, Lentinula edodes (Sanjo 701), Grifola frondosa, and Hypsizygus marmoreus showed antibacterial activity against the bacteria. Water, n-butanol, and ethyl acetate extracts of spent mushroom substrate (SMS) of H. erinaceus exhibited high antibacterial activity against different phytopathogenic bacteria: Pectobacterium carotovorum subsp. carotovorum, Agrobacterium tumefaciens, R. solanacearum, Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, X. axonopodis pv. vesicatoria, X. axonopodis pv. citiri, and X. axonopodis pv. glycine. Quantitative real-time PCR revealed that water extracts of SMS (WESMS) of H. erinaceus induced expressions of plant defense genes encoding ${\beta}$-1,3-glucanase (GluA) and pathogenesis-related protein-1a (PR-1a), associated with systemic acquired resistance. Furthermore, WESMS also suppressed tomato wilt disease caused by R. solanacearum by 85% in seedlings and promoted growth (height, leaf number, and fresh weight of the root and shoot) of tomato plants. These findings suggest the WESMS of H. erinaceus has the potential to suppress bacterial wilt disease of tomato through multiple effects including antibacterial activity, plant growth promotion, and defense gene induction.

Evidence for Volatile Memory in Plants: Boosting Defence Priming through the Recurrent Application of Plant Volatiles

  • Song, Geun Cheol;Ryu, Choong-Min
    • Molecules and Cells
    • /
    • 제41권8호
    • /
    • pp.724-732
    • /
    • 2018
  • Plant defence responses to various biotic stresses via systemic acquired resistance (SAR) are induced by avirulent pathogens and chemical compounds, including certain plant hormones in volatile form, such as methyl salicylate and methyl jasmonate. SAR refers to the observation that, when a local part of a plant is exposed to elicitors, the entire plant exhibits a resistance response. In the natural environment, plants are continuously exposed to avirulent pathogens that induce SAR and volatile emissions affecting neighbouring plants as well as the plant itself. However, the underlying mechanism has not been intensively studied. In this study, we evaluated whether plants "memorise" the previous activation of plant immunity when exposed repeatedly to plant defensive volatiles such as methyl salicylate and methyl jasmonate. We hypothesised that stronger SAR responses would occur in plants treated with repeated applications of the volatile plant defence compound MeSA than in those exposed to a single or no treatment. Nicotiana benthamiana seedlings subjected to repeated applications of MeSA exhibited greater protection against Pseudomonas syringae pv. tabaci and Pectobacterium carotovorum subsp. carotovorum than the control. The increase in SAR capacity in response to repeated MeSA treatment was confirmed by analysing the defence priming of the expression of N. benthamiana Pathogenesis-Related 1a (NbPR1a) and NbPR2 by quantitative reverse-transcription PCR compared with the control. We propose the concept of plant memory of plant defence volatiles and suggest that SAR is strengthened by the repeated perception of volatile compounds in plants.

배추무름병 원인균 분리 및 특성 연구 (Isolation and Characterization of Plant Pathogen that Cause Soft Rot Disease in Napa Cabbage)

  • 권영희;유아영;유종언;강호영
    • 생명과학회지
    • /
    • 제19권8호
    • /
    • pp.1177-1182
    • /
    • 2009
  • 배추 무름병을 대상으로 식물병원균 감염모델을 확립하기 위하여 무름병변을 가진 배추조직으로부터 80개의 독립된 세균집락을 순수 분리하였다. 이들 균을 감염되지 않은 배추 잎의 주맥부위에 접종하여 24${\sim}$48 시간 만에 무름병변을 나타내는 8개의 균주를 1차 선별하였다. 다양한 미생물학적, 생화학적, 형태학적인 시험을 통하여 분석한 결과 서로 다른 특성을 나타내는 균이라고 여겨지는 3개의 균을 최종 선정하였고 이들은 모두 그람 음성균으로 판명되었고 RB1, RB2 및 RB6로 명명하였다. API 20E시험, VITEK 2 COMPACT 분석, 16S rRNA 염기서열 분석 등을 종합할 때 RBl 및 RB2는 Erwinia carotovorum subsp. odoriferum 아종으로, RB6는 Erwinia carotovorum subsp. carotovorum 아종으로 추정되었다. 이들 균들은 $30^{\circ}C$, 생리적 pH인 중성 pH에서 최적생육을 하였다. 이들은 배추의 상처 유무에 상관없이 초기 접종양과 비례하여 무름병을 유발하였으며, 상처가 없는 경우보다 상처가 있는 경우에 더욱 명확한 병변을 유발하였다. RBl의 경우 $8.0{\times}10^8$ CFU/ml, RB2 균주는 $10^9$ CFU/ml, RB6는$4.7{\times}10^6$ CFU/ml에서 최초로 무름 증상을 나타냈다. 이들 균의 숙주 특이성을 관찰하기 위하여 14종의 야채에 접종한 결과 배추, 가지 파프리카에서만 무름병변을 유발하는 숙주 특이성을 나타내었다. 이 연구에서 사용된 실험재료들 및 감염모델은 향후 식물병원균의 감염기작해석에 크게 기여할 것으로 예상된다.

무름병에 감수성인 애기장대 돌연변이체 Atstp1 선발 (Selection of a Susceptible Line (Susceptible to Pectobacterium 1, Atstp1) to Soft-rot Disease in T-DNA Insertion Mutants Pool of Arabidopsis)

  • 최창현;김민갑;안일평;박상렬;배신철;황덕주
    • 식물병연구
    • /
    • 제16권3호
    • /
    • pp.312-315
    • /
    • 2010
  • 본 연구는 애기장대에서 무름병에 대한 저항성 유전자를 탐색하고자 2만여개의 T-DNA 삽입 돌연변이군을 이용하여 Pcc에 대한 스크리닝을 수행하고 이 방법을 소개한 연구다. 1차 선발을 통하여 15개의 저항성 line과 20개의 감수성 line을 선발하였으며, 이로부터 2차 선발하여 3개의 저항성 line과 4개의 감수성 line을 선발하였고, 최종적으로 3차 선발을 통하여 1개의 감수성 line (Atstp1)을 선발할 수 있었다. 현재 Atstp1을 이용해 flanking sequencing 하여 유전자를 탐색하고 있으며, 앞으로 클로닝을 통하여 다양한 무름병 저항성 식물 개발에 유용하게 이용될 것으로 기대한다.

Distribution of Pectobacterium Species Isolated in South Korea and Comparison of Temperature Effects on Pathogenicity

  • Jee, Samnyu;Choi, Jang-Gyu;Lee, Young-Gyu;Kwon, Min;Hwang, Ingyu;Heu, Sunggi
    • The Plant Pathology Journal
    • /
    • 제36권4호
    • /
    • pp.346-354
    • /
    • 2020
  • Pectobacterium, which causes soft rot disease, is divided into 18 species based on the current classification. A total of 225 Pectobacterium strains were isolated from 10 main cultivation regions of potato (Solanum tuberosum), napa cabbage (Brassica rapa subsp. pekinensis), and radish (Raphanus sativus) in South Korea; 202 isolates (90%) were from potato, 18 from napa cabbage, and five from radish. Strains were identified using the Biolog test and phylogenetic analysis. The pathogenicity and swimming motility were tested at four different temperatures. Pectolytic activity and plant cell-wall degrading enzyme (PCWDE) activity were evaluated for six species (P. carotovorum subsp. carotovorum, Pcc; P. odoriferum, Pod; P. brasiliense, Pbr; P. versatile, Pve; P. polaris, Ppo; P. parmentieri, Ppa). Pod, Pcc, Pbr, and Pve were the most prevalent species. Although P. atrosepticum is a widespread pathogen in other countries, it was not found here. This is the first report of Ppo, Ppa, and Pve in South Korea. Pectobacterium species showed stronger activity at 28℃ and 32℃ than at 24℃, and showed weak activity at 37℃. Pectolytic activity decreased with increasing temperature. Activity of pectate lyase was not significantly affected by temperature. Activity of protease, cellulase, and polygalacturonase decreased with increasing temperature. The inability of isolated Pectobacterium to soften host tissues at 37℃ may be a consequence of decreased motility and PCWDE activity. These data suggest that future increases in temperature as a result of climate change may affect the population dynamics of Pectobacterium.

Modulation of Quorum Sensing in Acyl-homoserine Lactone-Producing or -Degrading Tobacco Plants Leads to Alteration of Induced Systemic Resistance Elicited by the Rhizobacterium Serratia marcescens 90-166

  • Ryu, Choong-Min;Choi, Hye Kyung;Lee, Chi-Ho;Murphy, John F.;Lee, Jung-Kee;Kloepper, Joseph W.
    • The Plant Pathology Journal
    • /
    • 제29권2호
    • /
    • pp.182-192
    • /
    • 2013
  • Numerous root-associated bacteria (rhizobacteria) are known to elicit induced systemic resistance (ISR) in plants. Bacterial cell-density-dependent quorum sensing (QS) is thought to be important for ISR. Here, we investigated the role of QS in the ISR elicited by the rhizobacterium, Serratia marcescens strain 90-166, in tobacco. Since S. marcescens 90-166 produces at least three QS signals, QS-mediated ISR in strain 90-166 has been difficult to understand. Therefore, we investigated the ISR capacity of two transgenic tobacco (Nicotiana tabacum) plants that contained either bacterial acylhomoserine lactone-producing (AHL) or -degrading (AiiA) genes in conjunction with S. marcescens 90-166 to induce resistance against bacterial and viral pathogens. Root application of S. marcescens 90-166 increased ISR to the bacterial pathogens, Pectobacterium carotovorum subsp. carotovorum and Pseudomonas syringae pv. tabaci, in AHL plants and decreased ISR in AiiA plants. In contrast, ISR to Cucumber mosaic virus was reduced in AHL plants treated with S. marcescens 90-166 but enhanced in AiiA plants. Taken together, these data indicate that QS-dependent ISR is elicited by S. marcescens 90-166 in a pathogen-dependent manner. This study provides insight into QS-dependent ISR in tobacco elicited by S. marcescens 90-166.

Effect of Bacillus aryabhattai H26-2 and B. siamensis H30-3 on Growth Promotion and Alleviation of Heat and Drought Stresses in Chinese Cabbage

  • Shin, Da Jeong;Yoo, Sung-Je;Hong, Jeum Kyu;Weon, Hang-Yeon;Song, Jaekyeong;Sang, Mee Kyung
    • The Plant Pathology Journal
    • /
    • 제35권2호
    • /
    • pp.178-187
    • /
    • 2019
  • Plants are exposed to biotic stresses caused by pathogen attack and complex abiotic stresses including heat and drought by dynamic climate changes. To alleviate these stresses, we investigated two bacterial stains, H26-2 and H30-3 in two cultivars ('Ryeokkwang' and 'Buram-3-ho') of Chinese cabbage in plastic pots in a greenhouse. We evaluated effects of bacterial strains on plant growth-promotion and mitigation of heat and drought stresses; the role of exopolysaccharides as one of bacterial determinants on alleviating stresses; biocontrol activity against soft rot caused by Pectobacterium carotovorum subsp. carotovorum PCC21. Strains H26-2 and H30-3 significantly increased fresh weights compared to a $MgSO_4$ solution; reduced leaf wilting and promoted recovery after re-watering under heat and drought stresses. Chinese cabbages treated with H26-2 and H30-3 increased leaf abscisic acid (ABA) content and reduced stomatal opening after stresses treatments, in addition, these strains stably colonized and maintained their populations in rhizosphere during heat and drought stresses. As well as tested bacterial cells, exopolysaccharides (EPS) of H30-3 could be one of bacterial determinants for alleviation of tested stresses in Chinese cabbages, however, the effects were different to cultivars of Chinese cabbages. In addition to bacterial activity to abiotic stresses, H30-3 could suppress incidence (%) of soft rot in 'Buram-3-ho'. The tested strains were identified as Bacillus aryabhattai H26-2 and B. siamensis H30-3 based on 16S rRNA gene sequence analysis. Taken together, H26-2 and H30-3 could be candidates for both plant growth promotion and mitigation of heat and drought stresses in Chinese cabbage.