• Title/Summary/Keyword: cardioprotective

Search Result 89, Processing Time 0.026 seconds

Cardioprotective effect of ginsenoside Rb1 via regulating metabolomics profiling and AMP-activated protein kinase-dependent mitophagy

  • Hu, Jingui;Zhang, Ling;Fu, Fei;Lai, Qiong;Zhang, Lu;Liu, Tao;Yu, Boyang;Kou, Junping;Li, Fang
    • Journal of Ginseng Research
    • /
    • v.46 no.2
    • /
    • pp.255-265
    • /
    • 2022
  • Background: Ginsenoside Rb1, a bioactive component isolated from the Panax ginseng, acts as a remedy to prevent myocardial injury. However, it is obscure whether the cardioprotective functions of Rb1 are related to the regulation of endogenous metabolites, and its potential molecular mechanism still needs further clarification, especially from a comprehensive metabolomics profiling perspective. Methods: The mice model of acute myocardial ischemia (AMI) and oxygen glucose deprivation (OGD)-induced cardiomyocytes injury were applied to explore the protective effect and mechanism of Rb1. Meanwhile, the comprehensive metabolomics profiling was conducted by high-performance liquid chromatography and quadrupole time-of-flight mass spectrometry (HPLC-Q/TOF-MS) and a tandem liquid chromatography and mass spectrometry (LC-MS). Results: Rb1 treatment profoundly reduced the infarct size and attenuated myocardial injury. The metabolic network map of 65 differential endogenous metabolites was constructed and provided a new inspiration for the treatment of AMI by Rb1, which was mainly associated with mitophagy. In vivo and in vitro experiments, Rb1 was found to improve mitochondrial morphology, mitochondrial function and promote mitophagy. Interestingly, the mitophagy inhibitor partly attenuated the cardioprotective effect of Rb1. Additionally, Rb1 markedly facilitated the phosphorylation of AMP-activated protein kinase α (AMPKα), and AMPK inhibition partially weakened the role of Rb1 in promoting mitophagy. Conclusions: Ginsenoside Rb1 protects acute myocardial ischemia injury through promoting mitophagy via AMPKα phosphorylation, which might lay the foundation for the further application of Rb1 in cardiovascular diseases.

Cardioprotective potential of Korean Red Ginseng extract on isoproterenol-induced cardiac injury in rats

  • Lim, Kyu Hee;Ko, Dukhwan;Kim, Jong-Hoon
    • Journal of Ginseng Research
    • /
    • v.37 no.3
    • /
    • pp.273-282
    • /
    • 2013
  • The present study was designed to investigate the cardioprotective effects of Korean Red Ginseng extract (KRG) on isoproterenol (ISO)-induced cardiac injury in rats, particularly in regards to electrocardiographic changes, hemodynamics, cardiac function, serum cardiac enzymes, components of the myocardial antioxidant defense system, as well as inflammatory markers and histopathological changes in heart tissue. ISO (150 mg/kg, subcutaneous, two doses administered at 24-hour intervals) treatment induced significant decreases in P waves and QRS complexes (p<0.01), as well as a significant increase in ST segments. Moreover, ISO-treated rats exhibited decreases in left-ventricular systolic pressure, maximal rate of developed left ventricular pressure ($+dP/dt_{max}$) and minimal rate of developed left ventricular pressure ($-dP/dt_{max}$), in addition to significant increases in lactate dehydrogenase, aspartate transaminase, alanine transaminase and creatine kinase activity. Heart rate, however, was not significantly altered. And the activities of superoxide dismutase, catalase and glutathione peroxidase were decreased, whereas the activity of malondialdehyde was increased in the ISO-treated group. ISO-treated group also showed increased caspase-3 level, release of inflammatory markers and neutrophil infiltration in heart tissue. KRG pretreatment (250 and 500 mg/kg, respectively) significantly ameliorated almost all of the parameters of heart failure and myocardial injury induced by ISO. The protective effect of KRG on ISO-induced cardiac injury was further confirmed by histopathological study. In this regard, ISO treatment induced fewer morphological changes in rats pretreated with 250 or 500 mg/kg of KRG. Compared with the control group, all indexes in rats administered KRG (500 mg/kg) alone were unaltered (p>0.05). Our results suggest that KRG significantly protects against cardiac injury and ISO-induced cardiac infarction by bolstering antioxidant action in myocardial tissue.

Nitric Oxide-cGMP-Protein Kinase G Pathway Contributes to Cardioprotective Effects of ATP-Sensitive $K^+$ Channels in Rat Hearts

  • Cuong, Cang Van;Kim, Na-Ri;Cho, Hee-Cheol;Kim, Eui-Yong;Han, Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.2
    • /
    • pp.95-100
    • /
    • 2004
  • Ischemic preconditioning (IPC) has been accepted as a heart protection phenomenon against ischemia and reperfusion (I/R) injury. The activation of ATP-sensitive potassium $(K_{ATP})$ channels and the release of myocardial nitric oxide (NO) induced by IPC were demonstrated as the triggers or mediators of IPC. A common action mechanism of NO is a direct or indirect increase in tissue cGMP content. Furthermore, cGMP has also been shown to contribute cardiac protective effect to reduce heart I/R-induced infarction. The present investigation tested the hypothesis that $K_{ATP}$ channels attenuate DNA strand breaks and oxidative damage in an in vitro model of I/R utilizing rat ventricular myocytes. We estimated DNA strand breaks and oxidative damage by mean of single cell gel electrophoresis with endonuclease III cutting sites (comet assay). In the I/R model, the level of DNA damage increased massively. Preconditioning with a single 5-min anoxia, diazoxide $(100\;{\mu}M)$, SNAP $(300\;{\mu}M)$ and 8-(4-Chlorophenylthio)-guanosine-3',5'-cyclic monophosphate (8-pCPT-cGMP) $(100\;{\mu}M)$ followed by 15 min reoxygenation reduced DNA damage level against subsequent 30 min anoxia and 60 min reoxygenation. These protective effects were blocked by the concomitant presence of glibenclamide $(50\;{\mu}M)$, 5-hydroxydecanoate (5-HD) $(100\;{\mu}M)$ and 8-(4-Chlorophenylthio)-guanosine-3',5'-cyclic monophosphate, Rp-isomer (Rp-8-pCPT-cGMP) $(100\;{\mu}M)$. These results suggest that NO-cGMP-protein kinase G (PKG) pathway contributes to cardioprotective effect of $K_{ATP}$ channels in rat ventricular myocytes.

Scrophulariae Radix Aqueous Extracts Ameliorate the Pressure Overloaded Heart Failure by Transverse Aortic Constriction in Mice

  • Woo, Seong-jin;Baek, Kyung-min;Jang, Woo-seok
    • The Journal of Internal Korean Medicine
    • /
    • v.39 no.4
    • /
    • pp.624-636
    • /
    • 2018
  • Objectives: The purpose of this study was to investigate the cardioprotective effect of the potent antioxidant properties of Scrophulariae Radix (SR) aqueous extracts by examining pressure overload (PO) heart failure (HF) induced by transverse aortic constriction (TAC) of C57BL/6 mice. Methods: SR (500, 250, 125 mg/kg) and resveratrol (10 mg/kg) were administered orally once a day for 14 days, after the TAC operation. Changes in mortality, the body and heart weights, histopathology of the heart, and antioxidant defense system of the heart were analyzed. Results: After the TAC operation, increases were observed in mortality, heart weights, left ventricular hypertrophy, and lytic and focal fibrotic histological change, and destruction of the heart antioxidant defense system. However, the HF signs showed dose-dependent inhibition following 14 days of continuous oral treatment with SR. A SR dose of 125 mg/kg gave a similar inhibition to that obtained with resveratrol at 10 mg/kg. Conclusions: Oral administration of SR beneficially improves PO-induced HF following TAC surgery by increasing the activity of the heart antioxidant defense system. The overall effect of SR at 125 mg/kg is similar to the effect of resveratrol at 10 mg/kg. However, more detailed mechanistic studies should be performed by screening of the biologically active compounds in SR.

Protective Effect of Lonicerae Flos Aqueous Extracts on a Pressure Overload-induced Heart Failure Model

  • Shin, Jae-wook;Jang, Woo-seok;Baek, Kyung-min
    • The Journal of Internal Korean Medicine
    • /
    • v.38 no.6
    • /
    • pp.877-890
    • /
    • 2017
  • Objectives: Lonicerae flos (LF), a dried flower part of Lonicera japonica Thunb., has been widely used in Korean medicine as anti-inflammatory and antioxidative agent. The purpose of this study was to determine the cardioprotective effects of LF, through potential antioxidant effects, on the pressure overload (PO)-induced heart failure (HF) in C57BL/6 mice after transverse aortic constriction (TAC) surgery. Methods: Resveratrol (10 mg/kg body weight) or LF (125, 250 or 500 mg/kg body weight) was orally administered, once daily for 14 days, starting 14 days after TAC surgery. Changes in the mortality, body weights, heart weights, histopathology of the heart, and antioxidant defense systems of the heart were analyzed. Results: Marked and noticeable increases of heart weights, mortalities, and hypertrophic, focal, and lytic fibrotic histological changes in the LVs were observed, with destruction of heart antioxidant defense systems after surgery. However, HF signs, induced by TAC surgery through PO, and destruction of heart antioxidant defense systems were significantly and dose-dependently inhibited by 14 days of maintained oral treatment with LF 500, 250 or 125 mg/kg. Treatment with 250 mg/kg LF was comparable to treatment with 10 mg/kg resveratrol. Conclusions: The results in this study suggest that oral administration of LF favorably relieves PO-induced HF following TAC, through increase of heart antioxidant defense systems. The overall effects of 250 mg/kg LF were similar to those of 10 mg/kg resveratrol. More detailed mechanistic studies should be conducted in the future, with screening of the biologically active compounds in LF.

Effects of Bradykinin on Intracellular Calcium Transients in Cardiac Myocytes

  • Park, Choon-Ok;Kim, Yang-Mi;Han, Jae-Hee;Allen, David G.;Hong, Seong-Geun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.6
    • /
    • pp.615-621
    • /
    • 1999
  • In spite many evidences has supported the cardioprotective effect of bradykinin, its direct effects at the cell level are still under question. We investigated the both effects of bradykinin (BK) on $Ca^{2+}-related$ ionic currents using whole cell voltage clamp technique in rabbit cardiomyocytes and on the intracellular $Ca^{2+}$ transient using calcium sensitive fluorescence dye, indo-1AM. Simultaneously with recording intracellular $Ca^{2+}$ transients, cell contractility was estimated from the changes in length of the electrical stimulated rat cardiac myocytes. L-type $Ca^{2+}$ current decreased by bradykinin at the entire voltage range. Inward tail current increased initially up to its maximum about 4 min after exposing myocytes to BK, and then gradually decreased again by further exposure to BK. This tail current decreased remarkably at washing BK off but slowly recovered ca. 20 min later. The change in cell contractility was similar to that in tail current showing initial increase followed by gradual decrease. Removal of BK brought remarkable decrease in contractility, which was recovered $15{\sim}20$ min after cessation of electrical stimulation. Bradykinin increased $Ca^{2+}$ transient initially but after some time $Ca^{2+}$ transient also decreased coincidentally with contractility. From these results, it is suggested that bradykinin exerts directly its cardioprotective effect on the single myocytes by decreasing the intracellular $Ca^{2+}$ level followed by an initial increase in $Ca^{2+}$ transient.

  • PDF

Conditioning-induced cardioprotection: Aging as a confounding factor

  • Randhawa, Puneet Kaur;Bali, Anjana;Virdi, Jasleen Kaur;Jaggi, Amteshwar Singh
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.5
    • /
    • pp.467-479
    • /
    • 2018
  • The aging process induces a plethora of changes in the body including alterations in hormonal regulation and metabolism in various organs including the heart. Aging is associated with marked increase in the vulnerability of the heart to ischemia-reperfusion injury. Furthermore, it significantly hampers the development of adaptive response to various forms of conditioning stimuli (pre/post/remote conditioning). Aging significantly impairs the activation of signaling pathways that mediate preconditioning-induced cardioprotection. It possibly impairs the uptake and release of adenosine, decreases the number of adenosine transporter sites and down-regulates the transcription of adenosine receptors in the myocardium to attenuate adenosine-mediated cardioprotection. Furthermore, aging decreases the expression of peroxisome proliferator-activated receptor gamma co-activator 1-alpha ($PGC-1{\alpha}$) and subsequent transcription of catalase enzyme which subsequently increases the oxidative stress and decreases the responsiveness to preconditioning stimuli in the senescent diabetic hearts. In addition, in the aged rat hearts, the conditioning stimulus fails to phosphorylate Akt kinase that is required for mediating cardioprotective signaling in the heart. Moreover, aging increases the concentration of $Na^+$ and $K^+$, connexin expression and caveolin abundance in the myocardium and increases the susceptibility to ischemia-reperfusion injury. In addition, aging also reduces the responsiveness to conditioning stimuli possibly due to reduced kinase signaling and reduced STAT-3 phosphorylation. However, aging is associated with an increase in MKP-1 phosphorylation, which dephosphorylates (deactivates) mitogen activated protein kinase that is involved in cardioprotective signaling. The present review describes aging as one of the major confounding factors in attenuating remote ischemic preconditioning-induced cardioprotection along with the possible mechanisms.

Effects of Sophorae Radix Water Extract on Cultured Rat Myocardial Cells (고삼(苦蔘) 전탕액(煎湯液)이 배양심근세포(培養心筋細胞)에 미치는 영향(影響))

  • Kim, Hyun-Kyu;Park, Jun-Su;Kwon, Kang-Beom;Lee, Ho-Sub;Han, Jong-Hyun;Park, Seung-Taeck;Ryu, Do-Gon
    • The Journal of Korean Medicine
    • /
    • v.20 no.1 s.37
    • /
    • pp.142-150
    • /
    • 1999
  • In order to elucidate toxic the mechanism of myocardial damage and the protective effect of herbal extract, Sophorae Radix(SR) against myocardiotoxicity, the cytotoxic effect of adriamycin and cardioprotective effect of SR were examined by MTT assay, LDH activity, heart beat rate and light microscopy after cultured myocardial cells derived from neonatal mouse were treated with various concentrations of adriamycin, an inducer of myocardiotoxicity. Adriamycin induced a decrease of cell viability, an increase in the amount of lactate dehydrogenase(LDH), and a decrease in the heart beat rate and a decrease in the number of cells, when administered to cultures myocardial cells in a dose-dependent manner. In cardioprotective effect of SR. SR showed the decrease of amount of LDH, and an increase of heart beating rate and cells in number on cultured myocardial cells damaged by adriamycin. From the above results, it is suggested that adriamycin shows toxic effect in cultured myocardial cells derived from a neonatal mouse, and herbal extract such as SR is very effective in the prevention of adriamycin-induced cardiotoxicity.

  • PDF

Cardioprotective Effects of Low Dose Bacterial Lipopolysaccharide May Not Be Directly Associated with Prostacyclin Production

  • Moon, Chang-Hyun;Kim, Ji-Young;Lee, Soo-Hwan;Baik, Eun-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.3
    • /
    • pp.331-343
    • /
    • 1998
  • Sublethal dose of bacterial lipopolysaccharide (LPS) would induce protection against cardiac ischemic/reperfusion (I/R) injury. This study examines the following areas: 1) the temporal induction of the cardio-protection produced by LPS; and 2) the relations between a degree of protection and the myocardial prostacyclin ($PGI_2$) production. Rats were administered LPS (2 mg/kg, i.v.), and hearts were removed 1, 4, 8, 14, 24, 48, 72,and 96 h later. Using Langendorff apparatus, haemodynamic differences during 25 min of global ischemia/30 min reperfusion were investigated. The concentration of $PGI_2$ in aliquots of the coronary effluent was determined by radioimmunoassay as its stable hydrolysis product $6-keto-PGF1_{\alpha}$ and lactate dehydrogenase release were measured as an indicative of cellular injury. LPS-induced cardiac protection against I/R injury appeared 4 h after LPS treatment and remained until 96 h after treatment. $PGI_2$ release increased 2-3 fold at the beginning of reperfusion compared to basal level except in hearts treated with LPS for 48 and 72 h. In hearts removed 48 and 72 h after LPS treatment, basal $PGI_2$ was increased. To determine the enzymatic step in relation to LPS-induced basal $PGI_2$ production, we examined prostaglandin H synthase (PGHS) protein expression, a rate limiting enzyme of prostaglandin production, by using Western blot analysis. LPS increased PGHS protein expression in hearts at 24, 48, 72, 96 h after LPS treatment. Induction of PGHS expression appeared in both isotypes of PGHS, a constitutive PGHS-1 and an inducible PGHS-2. To identify the correlationship between $PGI_2$ production and the cardioprotective effect against I/R injury, indomethacin was administered in vivo or in vitro. Indomethacin did not inhibit LPS-induced cardioprotection, which was not affected by the duration of LPS treatment. Taken together, our results suggest that $PGI_2$ might not be the major endogenous mediator of LPS-induced cardioprotection.

  • PDF

Cardioprotective Potency of the Antioxidante Amifostine in the Ischemic and Reperfused Isolated Rat Heart (항산화제 Amifostine의 허혈 및 재관류시 흰쥐 적출심장의 심근 보호기능)

  • 허강배;천수봉;김송명
    • Journal of Chest Surgery
    • /
    • v.31 no.9
    • /
    • pp.845-854
    • /
    • 1998
  • Background: S-2-(3 aminoprophlamino) ethylphosphorothioic acid(WR-2721) is one of the radical scavenging thiols. We tested its protective effects in the reperfused heart. Material and Method: The experimental setup was the constant pressure Langendorffs perfusion system. We investigated the radical scavenging properties of this compound in isolated rat hearts which were exposed to 20 minutes ischemia and 20 minutes reperfusion. Four experimental groups were used:group I, control, Amifostine 50 mg(1 mL) peritoneal injection 30 minutes before ischemia(group II), Amifostine 10 mg(0.2 mL) injection during ischemia through coronary artery(group III),and Amifostine 50 mg(1 mL) peritoneal injection 2 hrs before ischemia(group IV). The experimental parameters were the levels of latate, CK-MB, and adenosine deaminase(ADA) in frozen myocardium, the quantity of coronary flow,and left ventricular developed pressure, and it's dp/dt. Statistical analysis was performed using repeated measured analysis of variance and student t-test. Result: The coronary flow of group II and IV were less than group I and III at equilibrium state but recovery of coronary flow at reperfusion state of group II, III, and IV were more increased compared with group I. The change of systolic left ventricular devoloping pressure of group II and IV were less than control group at equilibrium state, which seemed to be the influence of the pharmacological hypotensive effect of amifostine. But it was higher compared with group I at reperfusion state. The lactic acid contents of group II were less than control group in frozen myocardium.(Group I was 0.20 0.29 mM/g vs Group II, which was 0.10 0.11 mM/g). The quantity of CK-MB in myocardial tissue was highest in group IV (P=0.026 I: 120.0 97.8 U/L vs IV: 242.2 79.15 U/L). The adenosine deaminase contents in the coronary flow and frozen myocardium were not significantly different among each group. Conclusion: Amifostine seemed to have significant cardioprotective effect during ischemia and reperfusion injuries of myocardium.

  • PDF