• 제목/요약/키워드: carbonization time

검색결과 113건 처리시간 0.017초

콘크리트 구조물의 내구성능 저하를 방지하는 침투형 성능개선제 개발 (Development for Penetrative Performance Improving Agent to In Prevent Deterioration of Concrete Structures)

  • 류금성;고경택;김성욱;김도겸
    • 콘크리트학회논문집
    • /
    • 제17권4호
    • /
    • pp.489-498
    • /
    • 2005
  • 최근 콘크리트 구조물의 성능 저하는 염해, 중성화, 동결융해 및 기타 요인에 의해 증가하고 있고 콘크리트 성능 저하를 방지하기 위해 다양한 대책이 강구되고 있다. 이러한 콘크리트 성능 저하를 방지하기 위한 방법 중에 콘크리트 표면을 보호함으로써 성능 저하 요인을 차단할 수 있는 콘크리트 표면 처리제가 종종 사용되고 있다. 콘크리트 보수$\cdot$방수재료는 에폭시와 같은 유기계 재료가 많이 사용되고 있으며, 이런 재료는 초기접착력과 내약품성이 우수한 장점을 가지고 있다 그러나 이런 유기재료는 콘크리트와의 탄성계수 및 수축팽창율이 차이로 시간이 경과함에 따라 박리, 들뜸 현상이 발생하는 등 내구성에 문제가 있는 것으로 지적되고 있다. 한편 최근 콘크리트 구조물의 내구성 및 방수성능을 향상시키기 위해 무기질계 침투형 보수$\cdot$방수재의 사용사례가 증가하고 있다. 따라서 본 연구에서는 콘크리트 표면을 강화시켜 $CO_2$ 가스, 염화물 이온 등의 열화물질을 차단시키며 동시에 방수성능을 부여할 수 있는 콘크리트 침투형 성능개선제를 개발하였다.

CO2 활성화법에 의한 대나무 활성탄 제조와 CO2 흡착 특성 (Production and CO2 Adsorption Characteristics of Activated Carbon from Bamboo by CO2 Activation Method)

  • 박영철;조광주;최주홍
    • Korean Chemical Engineering Research
    • /
    • 제43권1호
    • /
    • pp.146-152
    • /
    • 2005
  • 대나무를 원료로 이산화탄소를 활성화제로 한 기상 활성화법에 의하여 대나무 활성탄을 제조하고, 이 대나무 활성탄의 $CO_2$ 흡착 특성을 실험하였다. 국내 산청산 대나무를 탄화온도 $900^{\circ}C$에서 열분해 하여 대나무 숯을 만든 후 배치형 튜브 반응기 내에서 활성화 온도 $750-900^{\circ}C$, 이산화탄소 주입비 $5-30cm^3/g-char{\cdot}min$, 활성화 유지시간 2-5 시간의 변화 조건에서 활성화 실험을 하였다. 제조된 활성탄은 수율이 측정되고 요오드 흡착력, 메틸렌 블루 흡착력과 비표면적 및 세공분포 등의 물리적 특성이 분석되었다. $CO_2$ 흡착 실험은 열중량 분석기를 사용하여 흡착온도 $20-80^{\circ}C$, $CO_2$ 농도 5-90% 변화 조건에서 행하였다. 활성화 온도와 활성화 시간이 증가됨에 따라 요오드 흡착력(680.8-1450.1 mg/g)과 메틸렌 블루 흡착력(23.5-220 mg/g)은 증가하였다. 그리고 $CO_2$ 가스 주입량의 증가시 $18.9cm^3/g-char{\cdot}min$까지는 요오드 흡착력과 메틸렌 블루 흡착력이 증가하였으나, 그 이상에서는 과다한 반응으로 수율의 급격한 감소와 함께 요오드 흡착력과 메틸렌 블루 흡착력도 감소하였다. 대나무 활성탄 특성 분석에서 중간세공과 거대세공 부피가 $0.65-0.91cm^3/g$으로 나타나 생물활성탄공정에 유리하게 사용될 수 있다. 대나무 활성탄의 $CO_2$ 흡착 실험에서는 흡착온도 $20^{\circ}C$, $CO_2$ 농도 90%에서 최대 106 mg/g-A.C.의 $CO_2$를 물리흡착 하였다. 5회 반복 실험시 $CO_2$ 흡착 특성 변화는 없었다.

오일팜 바이오매스의 자원화 연구 V - 오일팜 바이오매스 펠릿의 반탄화 연구 - (Study of Oil Palm Biomass Resources (Part 5) - Torrefaction of Pellets Made from Oil Palm Biomass -)

  • 이지영;김철환;성용주;남혜경;박형훈;권솔;박동훈;주수연;임현택;이민석;김세빈
    • 펄프종이기술
    • /
    • 제48권2호
    • /
    • pp.34-45
    • /
    • 2016
  • Global warming and climate change have been caused by combustion of fossil fuels. The greenhouse gases contributed to the rise of temperature between $0.6^{\circ}C$ and $0.9^{\circ}C$ over the past century. Presently, fossil fuels account for about 88% of the commercial energy sources used. In developing countries, fossil fuels are a very attractive energy source because they are available and relatively inexpensive. The environmental problems with fossil fuels have been aggravating stress from already existing factors including acid deposition, urban air pollution, and climate change. In order to control greenhouse gas emissions, particularly CO2, fossil fuels must be replaced by eco-friendly fuels such as biomass. The use of renewable energy sources is becoming increasingly necessary. The biomass resources are the most common form of renewable energy. The conversion of biomass into energy can be achieved in a number of ways. The most common form of converted biomass is pellet fuels as biofuels made from compressed organic matter or biomass. Pellets from lignocellulosic biomass has compared to conventional fuels with a relatively low bulk and energy density and a low degree of homogeneity. Thermal pretreatment technology like torrefaction is applied to improve fuel efficiency of lignocellulosic biomass, i.e., less moisture and oxygen in the product, preferrable grinding properties, storage properties, etc.. During torrefacton, lignocelluosic biomass such as palm kernell shell (PKS) and empty fruit bunch (EFB) was roasted under an oxygen-depleted enviroment at temperature between 200 and $300^{\circ}C$. Low degree of thermal treatment led to the removal of moisture and low molecular volatile matters with low O/C and H/C elemental ratios. The mechanical characteristics of torrefied biomass have also been altered to a brittle and partly hydrophobic materials. Unfortunately, it was much harder to form pellets from torrefied PKS and EFB due to thermal degradation of lignin as a natural binder during torrefaction compared to non-torrefied ones. For easy pelletization of biomass with torrefaction, pellets from PKS and EFB were manufactured before torrefaction, and thereafter they were torrefied at different temperature. Even after torrefaction of pellets from PKS and EFB, their appearance was well preserved with better fuel efficiency than non-torrefied ones. The physical properties of the torrefied pellets largely depended on the torrefaction condition such as reaction time and reaction temperature. Temperature over $250^{\circ}C$ during torrefaction gave a significant impact on the fuel properties of the pellets. In particular, torrefied EFB pellets displayed much faster development of the fuel properties than did torrefied PKS pellets. During torrefaction, extensive carbonization with the increase of fixed carbons, the behavior of thermal degradation of torrefied biomass became significantly different according to the increase of torrefaction temperature. In conclusion, pelletization of PKS and EFB before torrefaction made it much easier to proceed with torrefaction of pellets from PKS and EFB, leading to excellent eco-friendly fuels.