• Title/Summary/Keyword: carbonation curing

Search Result 93, Processing Time 0.019 seconds

Durability of Polymer-Modified Mortars Using Acrylic Latexes with Methyl Methacrylate (MMA계 아크릴 라텍스를 혼입한 폴리머시멘트 모르타르의 내구성)

  • Hyung Won-Gil;Kim Wan-Ki;Soh Yang-Seob
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.411-418
    • /
    • 2005
  • Polymer-modified mortar and concrete are prepared by mixing either a polymer or monomer in a dispersed, or liquid form with fresh cement mortar and concrete mixtures, and subsequently curing, and if necessary, the monomer contained in the mortar or concrete is polymerized in situ. Although polymers and monomers in any form such as latexes, water-soluble polymers, liquid resins, and monomers are used in cement composites such as mortar and concrete, it is very important that both cement hydration and polymer phase formation proceed well the yield a monolithic matrix phase with a network structure in which the hydrated cement phase and polymer phase interpenetrate. In the polymer-modified mortar and concrete structures, aggregates are bound by such a co-matrix phase, resulting in the superior properties of polymer-modified mortar and concrete compared to conventional mortar and concrete. The purpose of this study is to obtain the necessary basic data to develope appropriate latexes as cement modifiers, and to clarify the effects of the monomer ratios and amount of emulsifier on the properties of the polymer-modified mortars using methyl methacrylate-butyl acrylate(MMA/BA) and methyl methacrylate-ethyl acrylate(MMA/EA) latexes. The results of this study are as follows, the water absorption, chloride ion penetration depth and carbonation depth of MMA/BA-modified mortar are lowest. However, they are greatly affected by the polymer-cement ratio rather than the bound MMA content and type of polymer.

The Properties of Strength and Durability of Concrete Using Early-Strength Poly Carbonic Acid Admixture (폴리카르본산계 조강혼화제 혼합 콘크리트의 강도 및 내구 특성)

  • Lee, Sang-Ho;Hong, Kyung-Sun;Moon, Han-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.217-224
    • /
    • 2007
  • This study reports the properties of high early strength & durability of concrete using PC admixture. To apply these data to construction site, we did the lab tests. The target of this study is to accomplish early strength of concrete (5.0 Mpa/18 hr), and we did the durability tests such as length change test, chloride ion penetration test, fleeting and thawing test, adiabatic test, etc. And we tested the porperties of concrete by the different factors, such as the type of admixtures, curing temperature, the amount of binder, etc. Through the test of concrete using the different type of admixture, PC type was more excellent than PNS type admixture. As a result, we made a concrete of high early strength concrete, and excellent durable concrete. According to these tests, we concluded that we can apply this type of PC admixture to the civil & construction site, and we can reduce the term of works and finally we will accomplish the economical construction.

Mineralogical and Physical Properties of Lime Plaster used in Wall Repair in Temple of Bagan, Myanmar (미얀마 바간지역 사원 벽체 보수에 사용되는 석회 플라스터의 광물학적 및 물리적 특성)

  • Ahn, Sunah;Kim, Eunkyung;Nam, Byeongjik;Hlaing, Chaw Su Su;Kang, Soyeong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.4
    • /
    • pp.267-275
    • /
    • 2018
  • The purposes of this study were to analyze the mineralogical characteristics of slaked lime used for wall repair of traditional buildings in Bagan, Myanmar and to evaluate the physical properties of lime plaster produced by the same method as Bagan region. In the X-ray diffraction and thermal analysis of the Myanmar slaked lime, portlandite ($Ca(OH)_2$) and brucite ($Mg(OH)_2$) were detected as main constituent minerals, and a carbonate rock mainly composed of dolomite ($CaMg(CO_3)_2$) minerals may be used as a raw material to make slaked lime. The field-emission scanning electron microscope analysis showed that the Myanmar slaked lime was composed of irregularly shaped crystals of $0.5{\mu}m$ or larger and a small amount of $0.1{\mu}m$ of plate - like crystals. The size and uniformity of crystals in Myanmar lime is different from that of Korea slaked lime. This may be attributed to the effect of the mineral composition and the lime hydration method of Myanmar, which produces slurry by immersing the burnt lime in excess water for a long period of time. The compressive strength of the lime plaster in Myanmar resulted in a mean value of $1.13N/mm^2$ for the specimens cured for 28 days. The strength of the specimens with Bale juice was $1.03N/mm^2$, respectively. The lime is an air setting material that exhibits strength through long carbonation process. Therefore, it is necessary to evaluate physical properties according to curing period through long-term curing over 28 days in the future.