• Title/Summary/Keyword: carbonate water

Search Result 480, Processing Time 0.028 seconds

Improvement of Biomineralization of Sporosarcina pasteurii as Biocementing Material for Concrete Repair by Atmospheric and Room Temperature Plasma Mutagenesis and Response Surface Methodology

  • Han, Pei-pei;Geng, Wen-ji;Li, Meng-nan;Jia, Shi-ru;Yin, Ji-long;Xue, Run-ze
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.9
    • /
    • pp.1311-1322
    • /
    • 2021
  • Microbially induced calcium carbonate precipitation (MICP) has recently become an intelligent and environmentally friendly method for repairing cracks in concrete. To improve on this ability of microbial materials concrete repair, we applied random mutagenesis and optimization of mineralization conditions to improve the quantity and crystal form of microbially precipitated calcium carbonate. Sporosarcina pasteurii ATCC 11859 was used as the starting strain to obtain the mutant with high urease activity by atmospheric and room temperature plasma (ARTP) mutagenesis. Next, we investigated the optimal biomineralization conditions and precipitation crystal form using Plackett-Burman experimental design and response surface methodology (RSM). Biomineralization with 0.73 mol/l calcium chloride, 45 g/l urea, reaction temperature of 45℃, and reaction time of 22 h, significantly increased the amount of precipitated calcium carbonate, which was deposited in the form of calcite crystals. Finally, the repair of concrete using the optimized biomineralization process was evaluated. A comparison of water absorption and adhesion of concrete specimens before and after repairs showed that concrete cracks and surface defects could be efficiently repaired. This study provides a new method to engineer biocementing material for concrete repair.

Effect of Carbon Dioxide in the Air on Zinc-air Cell (대기중의 이산화탄소가 공기-아연전지에 미치는 영향)

  • Kim, Nam-In;Park, Ki-Hong;Choi, Yong-Kook;Lee, Woo-Tae
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.177-182
    • /
    • 1999
  • The electrolyte was brought into contact with air and potassium carbonate concentration was measured with various contact time in order to check the effect of carbon dioxide in the air on zinc-air cell. The relationship between potassium carbonate concentration in electrolyte and battery capacity was also studied. The potassium carbonate concentration increased due to carbon dioxide absorption with increasing contact time with air, but the cell capacity linearly decreased with increasing potassium carbonate concentration in the electrolyte. The rate of carbon dioxide absorption was mainly affected by the pore size of hydrophobic membrane. Our study showed that adapting the pore of hydrophobic membrane decreased the loss of cell discharge performance due to the presence of carbon dioxide or water vapor in the atmosphere.

  • PDF

Corrosion Characteristics by CCPP Control in Simulated Distribution System (CCPP 조절에 따른 모의 상수관로의 부식특성에 관한 연구)

  • Kim, Do-Hwan;Lee, Jae-In;Lee, Ji-Hyung;Han, Dong-Yueb;Kim, Dong-Youn;Hong, Soon-Heon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.12
    • /
    • pp.1249-1256
    • /
    • 2005
  • This study was performed to investigate the efficiency of the corrosion prevention in the simulated distribution system using CCPP(Calcium Carbonate Precipitation Potential) as the anti-corrosive index by adjusting pH, total dissolved solids, alkalinity and calcium hardness in the water treatment pilot process. The materials of the simulated distribution system(SDS) were equiped with same materials of real field water distribution system. CCPP concentrations controlled by $Ca(OH)_2$, $CO_2$ gas and $Na_2CO_3$ in the simulated distribution system and uncontrolled by the chemicals in the general water distribution system were average 0.61 mg/L and -7.77 mg/L. The concentrations of heavy metals like Fe, Zn, Cu ions in effluent water of the simulated distribution system controlled with water quality were decreased rather than the general water distribution system uncontrolled with water quality. In simulated distribution system(SDS), corrosion prevention film formed by CCPP control was observed that scale was come into forming six months later and it was formed into density as time goes on. We were analyzed XRD(X-ray diffraction) for investigating component of crystal compounds and structure for galvanized steel pipe(15 mm). Finding on analysis, scale was compounded to $Zn_4CO_3(OH)_6{\cdot}H_2O$ (Zinc Carbonate Hydroxide Hydrate) after ten months late, and it was compounded on $CaCO_3$(Calcium Carbonate) and $ZnCO_3$(Smithsonite) after nineteen months later.

Geochemical Water Quality and Genesis of Carbonated Dalki Mineral Water in the Chungsong Area, Kungpook (경북청송지역 달기 탄산약수의 지화학적 수질특성과 생성기원)

  • 정찬호
    • Economic and Environmental Geology
    • /
    • v.32 no.5
    • /
    • pp.455-468
    • /
    • 1999
  • Carbonated mineral waters fo $Ca(Mg)-HCO_3$ type spring out fissure of Jurassic granite in the valley floor of the Chungsong area. The water has been long as a Dalki medicinal water because of its unique therapeutic effect against clacium deficit, stomach and skin troubles, ect. The water has a high $CO_2$ concentration ($P_{CO_2}$=0.51~1.12atm) and exhibits strong pH buffering (5.9~6.26) by $H_2CO_3/HCO_3$ couple. Electrical conductivity ranges from 1,900 to 3100 $\mu$S/cm. Environmental isotopic data $(^{2}H/^{1}H, ^{18}O/^{16}O \;and \;^3H)$ indicates that the water is of meteoric origin recharged in the Cretaceous sedimetary strata distributed in upper part of the catchment area at least before 1950s, The high $P_{co_2}$ and carbon isotope data (${\delta}^{13}C=-3\sim-0.2\textperthousand$) suggest that the potential source of carbonated mineral water was originated in deep-seated $CO_2$ as wel as aboundant carbonate minerals of sedimentary desimetary rocks. The major source minerals of the dissoved species in the carbonated mineral water appear to be carbonate minerals, albite and K-feld-spar in sedimentrary rocks.

  • PDF

Recycling of Wastepaper(V): -Calcium Hardness Control of Process Water for Zero-Discharge System- (고지재상연구 (제5보) -공정수 폐쇄화를 위한 칼슘경도 조절-)

  • 지경락;류정용;신종호;송봉근;오세균
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.2
    • /
    • pp.15-24
    • /
    • 1999
  • A new technique for recycling of white water was developed in order to reduce the calcium hardness in a closed OCC recycling system. Calcium ions present in the white water were precipitated as calcium carbonate by reacting with sodium carbonate, and the precipitated $CaCO_3$ was removed from the system using a flotation fractionation method, which has been commonly used in deinking process. In the flotation stage, a mixed gas of $CO_2$-air was purged into the flotation cell because the pH of $Na_2CO_3$-treated white water was reduced to neutral by $CO_2$ gas. Since $CaCO_3$ precipitate tends to stick onto fine fiber surface and then selectively removed from the white water, a proper amount of suspended solid in white water acts as an important factor for deciding the removal efficiency. By the application of $Na_2CO_3$ addition-$CO_2$ flotation to the short circulated white water, the calcium hardness was significantly reduced by 87% and more. Removal of calcium ions with fine fibers led to a drainage improvement, reduction of fresh water consumption, and enhanced efficiency of wet-end chemicals.

  • PDF

A Novel Method for Calcium Hardness Control of Closed OCC Recycling System

  • Ow, Say-Kyoun;Shin, Jong-Ho;Song, Bong-Keun;Ryu, Jeong-Yong
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 1999.11b
    • /
    • pp.164-171
    • /
    • 1999
  • A new technique for recycling process water was developed in order to reduce the calcium hardness of the closed OCC recycling system. Calcium ions present in the white water were precipitated as calcium carbonate by a reaction with sodium carbonate and the CaCO$_3$precipitates were easily removed from the system by a dissolved air flotation(DAF) method. After the DAF stage, CO$_2$-gas was purged into the water because the pH of Na$_2$CO$_3$-treated white water was reduced to neutral by CO$_2$gas. Since CaCO$_3$precipitate tends to stick onto the fine fiber surface and then is selectively removed from the water, a proper amount of suspended solid in the process water acts as an important factor in deciding the removal efficiency. By the application of Na$_2$CO$_3$addition - DAF - CO$_2$purging to the short circulated white water the calcium hardness was significantly reduced by 92% and more. The removal of calcium ions with fine fibers led to drainage improvement, reduction of fresh water consumption, and enhanced efficiency of wet-end chemicals.

Carbon Dioxide Capture and Carbonate Synthesis via Carbonation of KOH-Dissolved Alcohol Solution (KOH-알코올 용액의 탄산화를 통한 이산화탄소 포집 및 탄산염 합성)

  • Kim, Eung-Jun;Han, Sang-Jun;Wee, Jung-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.11
    • /
    • pp.597-606
    • /
    • 2015
  • This work investigates the carbonation of KOH-dissolved methanol and ethanol solution systems carried out for $CO_2$ fixation. Potassium methyl carbonate (PMC) and potassium ethyl carbonate (PEC) were synthesized during the reaction in each solution as the solid powder, and they were characterized in detail. The amount of $CO_2$ chemically absorbed to produce the PMC and PEC precipitates were calculated to be 97.90% and 99.58% of their theoretical values, respectively. In addition, a substantial amount of $CO_2$ was physically absorbed in the solution during the carbonation. PMC precipitates were consisted of the pure PMC and $KHCO_3$ with the weight ratio of 5:5, respectively. PEC precipitates were also mixture of the pure PEC and $KHCO_3$ with the weight ratio of 8:2, respectively. When these two precipitates were dissolved in excess water, methanol and ethanol were regenerated remaining solid $KHCO_3$ in the solutions. Therefore, the process has the potential to be one of the efficient options of CCS and CCU technologies.

Diagenesis of the Carbonate Rocks of the Seamounts In the Federated States of Micronesia, Central Pacific (중앙태평양 마이크로네시아 군도 해저산 일원에서 발견되는 탄산염암의 속성작용)

  • Woo, Kyung-Sik;Choi, Yoon-Ji;Lee, Kyeong-Yong;Kang, Jung-Keuk;Park, Byong-Kwong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.4
    • /
    • pp.214-227
    • /
    • 1998
  • This study was carried out to investigate the composition and diagenesis of the carbonate rocks from the seamounts in the Federated States of Micronesia, Central Pacific. Most of the samples were dredged from the water depth of about 1000-3000 m mainly in Chuuk Island, Hunter Bank, Caroline Ridge and Yap Trench. The carbonate rocks are either pelagic sediment mainly of planktonic foraminifera or shallow-marine sediment of corals, calcareous algae, mollusks and echinoderms. The rocks are altered texturally and chemically, except for those from the Hunter Bank and Yap A. The presence of shallow-marine cements suggests that the carbonate sediment has been subsided or reworked to the present water depth after deposition in shallow-marine environments. The texture of the carbonate sediment is reminiscent of meteoric diagenesis; however, the stable carbon isotopic composition of the altered rock samples shows affinity with that of sea water and the oxygen isotopic values are slightly enriched or same as compared to those of unaltered samples. These stable isotopic data suggest that the carbonate sediment of the study area has been diagenetically altered in the present deep-marine environment.

  • PDF

ALC 의 내구성 및 물성개선에 관한 연구

  • 이범재;홍성수;황의환;조헌영;노재성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.65-70
    • /
    • 1993
  • The effect of particle size of Al powder, water repellent agent and finishing agent on frost resistance, absorption ratio and structure of micropore was examined to improve the physical properties and durability of ALC. According as the amount added of water repellent agent was increased, frost resistance was improved and absorption ratio was decreased. From one side freezing /thaw test, finishing agent which has a low vapor permeation located the crack at close indoor point of ALC specimen. ALC produced from fine Al powder has a low volume reduction by scalling and a sound appearance after freezing/thawing test and top surface freezing test, The crystal of tobermorite in ALC matrix was converted to calcium carbonate by carbonation which was accelerated with the decreasing of water content. Since the micropore of ALC was filled up by calcium carbonate, void ratio was reduced and crack was detected after complete carbonation.

  • PDF

A Study on Experimental Analysis of Semi-Continuous Settling Tank using Characteristics of Solid Sedimentation in the Binary $CaCO_3$-Water Slurry (탄산칼슘-물 이성분계 슬러리의 침강 특성을 이용한 반연속식 침전탑의 실험적 해석에 관한 연구)

  • 안원술;노승백;김정배;박상원;최창균
    • Journal of Environmental Science International
    • /
    • v.7 no.5
    • /
    • pp.659-667
    • /
    • 1998
  • In the present paper, batch and semi-continuous settling characteristics of a binary calcium carbonate-water system were investigated. Using experimental data of batch settling characteristics, a graphical analysis for a semi-continuous thickening column was developed and compared with experimental results on the basis of Kynch theory, only where the feed velocity line was within the limits of Kynch theorem III. The analysis showed good agreement with experiments. Quite erroneous results, however, was observed for the analysis of a sludge region on the underloaded operation, which was considered due to the deviation from the limits of theory.

  • PDF