• Title/Summary/Keyword: carbonate mineral

Search Result 249, Processing Time 0.027 seconds

Carbonic Anhydrase Mimicry for Carbon Dioxide Fixation and Calcium Carbonate Mineralization (탄산탈수효소 모사를 이용한 이산화탄소 고정화 및 탄산칼슘 합성)

  • Sahoo, Prakash C.;Jang, Young Nam;Chae, Soo Chun;Lee, Seung Woo
    • Particle and aerosol research
    • /
    • v.9 no.4
    • /
    • pp.201-208
    • /
    • 2013
  • Copper (II) and Nickel (II) mimic complexes of enzyme carbonic anhydrase were evaluated under ambient condition for carbon dioxide capture and conversion process. The synthesized complexes were characterized by ATR-FTIR and UV-DR spectroscopy. It was found that all the complexes have biomimetic activity towards $CO_2$ using para-nitrophenyl acetate (p-NPA) hydrolysis as the model reaction. Interestingly, the proper geometry obtained by the restricted orientation of tripodal N atoms in Cu (II) complex of 2,6-bis(2-benzimidazolyl) pyridine showed the highest activity (1.14 au) compared to others. The $CO_2$ bio-mineralization to $CaCO_3$ was carried out via in-vitro crystallization approach. Results indicate that the biomimetic complexes have a role in determining $CaCO_3$ morphology. The present observations establish a qualitative insight for the design of improved small-molecule catalysts for carbon capture.

Geochemical Water Quality and Genesis of Carbonated Dalki Mineral Water in the Chungsong Area, Kungpook (경북청송지역 달기 탄산약수의 지화학적 수질특성과 생성기원)

  • 정찬호
    • Economic and Environmental Geology
    • /
    • v.32 no.5
    • /
    • pp.455-468
    • /
    • 1999
  • Carbonated mineral waters fo $Ca(Mg)-HCO_3$ type spring out fissure of Jurassic granite in the valley floor of the Chungsong area. The water has been long as a Dalki medicinal water because of its unique therapeutic effect against clacium deficit, stomach and skin troubles, ect. The water has a high $CO_2$ concentration ($P_{CO_2}$=0.51~1.12atm) and exhibits strong pH buffering (5.9~6.26) by $H_2CO_3/HCO_3$ couple. Electrical conductivity ranges from 1,900 to 3100 $\mu$S/cm. Environmental isotopic data $(^{2}H/^{1}H, ^{18}O/^{16}O \;and \;^3H)$ indicates that the water is of meteoric origin recharged in the Cretaceous sedimetary strata distributed in upper part of the catchment area at least before 1950s, The high $P_{co_2}$ and carbon isotope data (${\delta}^{13}C=-3\sim-0.2\textperthousand$) suggest that the potential source of carbonated mineral water was originated in deep-seated $CO_2$ as wel as aboundant carbonate minerals of sedimentary desimetary rocks. The major source minerals of the dissoved species in the carbonated mineral water appear to be carbonate minerals, albite and K-feld-spar in sedimentrary rocks.

  • PDF

Synthesis of aragonite precipitated calcium carbonate by homogeneous precipitate reaction of $Ca(OH)_2\;and Na_2CO_3$ ($Ca(OH)_2\;및 \;Na_2CO_3$수용액의 균일침전 반응에 의한 아라고나이트 침강성 탄산 칼슘의 합성)

  • Park, Jin-Koo;Park, Hyun-Seo;Ahn, Ji-Whan;Kim, Hwan;Park, Charn-Hoon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.3
    • /
    • pp.110-114
    • /
    • 2004
  • Formation behavior of aragonite precipitated calcium carbonate was investigated with changed the concentration of $Na_2CO_3$ solution and addition method which added in the $Ca(OH)_2$ slurry at $75^{\circ}C$. In this reaction, we found that $Na^+$ ions were substituted into $Ca^{2+}$ion site then disturb the growth of calcite, and while proceed the crystal growth in a certain direction and promote the formation of aragonite. Also, a decrease of reaction rate by control the concentration of $CO_3^{2-}$ ion, induce the homogeneous precipitate reaction and increase substitution ability of $Na^+$ ions, consequently it was promote the formation and growth of aragonite.

Mineralogical Characteristics of Naturally Occurring Asbestos (NOA) at Daero-ri, Seosan, Chungnam, Korea (충남 서산 대로리 일대 자연발생석면의 광물학적 특성)

  • Jung, Haemin;Shin, Joodo;Kim, Yumi;Park, Jaebong;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.47 no.5
    • /
    • pp.467-477
    • /
    • 2014
  • Naturally occurring asbestos (NOA) occurs in rocks and soils as a result of natural weathering and human activities. The asbestos have been associated with ultramafic and mafic rocks, and carbonate rock. The previous studies on NOA were mainly limited to ultramafic and mafic rock-hosted asbestos in Korea. But, studies on carbonatehosted asbestos are relatively rare. Therefore, the purposes of this study were to investigate mineralogical characteristics of carbonate-hosted and metapelite-hosted NOA and to examine genesis of NOA occurred in the both rocks. The study area was Daerori, Seosan, Chungnam Province, Korea. The major rock formation consisted of limestone and schist which have been known to contain asbestos. Sampling was performed at outcrop which contained carbonate rock showing acicular asbestos crystals as well as pegmatitic intrusion that contacted with carbonate rock. PLM, XRD, EPMA, and EDS analyses were used to characterize mineral assemblages, mineralogical characteristics, and crystal habits of amphiboles and other minerals. BSEM images were also used to examine the genesis of asbestos minerals. The amphibole group was observed in all of the carbonate rocks, and actinolite and tremolite were identified in all rocks. These mineral habits were mainly micro-acicular crystals or secondary asbestiform minerals on the surface of non-asbestiform minerals appearing split end of columnar crystals produced by weathering. BSEM images showed residual textures of samples. The residual textures of carbonate rocks showed dolomite-tremolite-diopside mineral assemblages that formed during prograde metasomatism stage. Some carbonate rock also showed diopside-tremolite-talc mineral assemblages which were formed during retrograde metasomatism stage, as the residual textures. In result the presence of asbestos actinolite-tremolite in the carbonate rocks were confirmed in the areas where actinolite-tremolite asbestos was influenced by low temperature hydrothermal solution during metasomatism stage. These asbestos minerals showed the acicular asbestiform minerals, but even non-asbestiform minerals, a bundle or columnar shape, could transform to asbestiform minerals as potential NOA by weathering because the end of columnar shape of non-asbestiform minerals appeared as multiple acicular shaped fibers.

Characteristic of Precipitated Metal Carbonate for Carbon Dioxide Conversion Using Various Concentrations of Simulated Seawater Solution (해수 농축수 내 금속 이온 농도에 따른 이산화탄소 전환 생성물의 특성연구)

  • Choi, Eunji;Kang, Dongwoo;Yoo, Yunsung;Park, Jinwon;Huh, Il-sang
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.539-546
    • /
    • 2019
  • Global warming has mentioned as one of the international problems and these researches have conducted. Carbon Capture, Utilization and Storage (CCUS) technology has improved due to increasing importance of reducing emission of carbon dioxide. Among of various CCUS technologies, mineral carbonation can converted $CO_2$ into high-cost materials with low energy. Existing researches has been used ions extracted solid wastes for mineral carbonation but the procedure is complicated. However, the procedure using seawater is simple because it contained high concentration of metal cation. This research is a basic study using seawater-based wastewater for mineral carbonation. 3 M Monoethanolamine (MEA) was used as $CO_2$ absorbent. Making various concentrations of seawater solution, simulated seawater powder was used. Precipitated metal carbonate salts were produced by mixing seawater solutions and $rich-CO_2$ absorbent solution. They were analyzed by X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Thermogravimetric Analysis (TGA) and studied characteristic of producing precipitated metal carbonate and possibility of reusing absorbent.

Synthesis of Na Compounds from Sodium Concentrated Solution Using Carbonation and Cryo-crystallization (탄산화 및 저온 결정화를 통한 나트륨 농축수로부터 나트륨 화합물 합성)

  • Lee, Seung-Woo;Chae, Soochun;Bang, Jun-Hwan
    • Resources Recycling
    • /
    • v.29 no.4
    • /
    • pp.58-66
    • /
    • 2020
  • Carbonation (step I) and cryo-crystallization (crystallization at low temperature) (step II) were performed to synthesize Na compounds from sodium concentrated solution. In the step 1, the solubility and pH of carbon dioxide (95 wt.%) affecting carbonation could be changed by the variation of reaction temperature. The step II was performed at 2 ℃ after carbonation. The injection of carbon dioxide was carried out twice for the stable production and the saturated solubility of carbonate ions in solution. Firstly, we tried to inject CO2 for controlling the solubility of CO2 by changing the reaction temperature from 35 ℃ to 10 ℃, and the second injection was aimed at 10 ℃ for inducing nucleation of Na compound through carbonation after NaCl solution addition. In the cryo-crystallization step, the crystal growth of Na compounds could be induced by slowing the carbonation rate through reaction temperature change from 10 ℃ to 2 ℃. In this study, the effect on NaOH concentration was examined and the purity of Na compound was increased when 2M NaOH was used. In addition, the synthesized Na compounds were mostly rod-shaped and consisted of sodium carbonate or sodium carbonate with monohydrate.

Characterization of Urease-Producing Bacteria Isolated from Heavy Metal Contaminated Mine Soil

  • Park, Min-Jeong;Yoon, Min-Ho;Nam, In-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.391-397
    • /
    • 2014
  • Acid mine drainage occurrence is a serious environmental problem by mining industry; it usually contain high levels of metal ions, such as iron, copper, zinc, aluminum, and manganese, as well as metalloids of which arsenic is generally of greatest concern. It causes mine impacted soil pollution with mining and smelting activities, fossil fuel combustion, and waste disposal. In the present study, three bacterial strains capable of producing urease were isolated by selective enrichment of heavy metal contaminated soils from a minei-mpacted area. All isolated bacterial strains were identified Sporosarcina pasteurii with more than 98% of similarity, therefore they were named Sporosarcina sp. KM-01, KM-07, and KM-12. The heavy metals detected from the collected mine soils containing bacterial isolates as Mn ($170.50mg\;kg^{-1}$), As ($114.05mg\;kg^{-1}$), Zn ($92.07mg\;kg^{-1}$), Cu ($62.44mg\;kg^{-1}$), and Pb ($40.29mg\;kg^{-1}$). The KM-01, KM-07, and KM-12 strains were shown to be able to precipitate calcium carbonate using urea as a energy source that was amended with calcium chloride. SEM-EDS analyses showed that calcium carbonate was successfully produced and increased with time. To confirm the calcium carbonate precipitation ability, urease activity and precipitate weight were also measured and compared. These results demonstrate that all isolated bacterial strains could potentially be used in the bioremediation of acidic soil contaminated by heavy metals by mining activity.

Surface erosion of MICP-treated sands: Erosion function apparatus tests and CFD-DEM bonding model

  • Soo-Min Ham;Min-Kyung Jeon;Tae-Hyuk Kwon
    • Geomechanics and Engineering
    • /
    • v.33 no.2
    • /
    • pp.133-140
    • /
    • 2023
  • Soil erosion can cause scouring and failures of underwater structures, therefore, various soil improvement techniques are used to increase the soil erosion resistance. The microbially induced calcium carbonate precipitation (MICP) method is proposed to increase the erosion resistance, however, there are only limited experimental and numerical studies on the use of MICP treatment for improvement of surface erosion resistance. Therefore, this study investigates the improvement in surface erosion resistance of sands by MICP through laboratory experiments and numerical modeling. The surface erosion behaviors of coarse sands with various calcium carbonate contents were first investigated via the erosion function apparatus (EFA). The test results showed that MICP treatment increased the overall erosion resistance, and the contribution of the precipitated calcium carbonate to the erosion resistance and critical shear stress was quantified in relation to the calcium carbonate contents. Further, these surface erosion processes occurring in the EFA test were simulated through the coupled computational fluid dynamics (CFD) and discrete element method (DEM) with the cohesion bonding model to reflect the mineral precipitation effect. The simulation results were compared with the experimental results, and the developed CFD-DEM model with the cohesion bonding model well predicted the critical shear stress of MICP-treated sand. This work demonstrates that the MICP treatment is effective in improving soil erosion resistance, and the coupled CFD-DEM with a bonding model is a useful and promising tool to analyze the soil erosion behavior for MICP-treated sand at a particle scale.

Effect of chemical concentrations on strength and crystal size of biocemented sand

  • Choi, Sun-Gyu;Chu, Jian;Kwon, Tae-Hyuk
    • Geomechanics and Engineering
    • /
    • v.17 no.5
    • /
    • pp.465-473
    • /
    • 2019
  • Biocementation due to the microbially induced calcium carbonate precipitation (MICP) process is a potential technique that can be used for soil improvement. However, the effect of biocementation may be affected by many factors, including nutrient concentration, bacterial strains, injection strategy, temperature, pH, and soil type. This study investigates mainly the effect of chemical concentration on the formation of calcium carbonate (e.g., quantity, size, and crystalline structure) and unconfined compressive strength (UCS) using different treatment time and chemical concentration in the biotreatment. Two chemical concentrations (0.5 and 1.0 M) and three different treatment times (2, 4, and 8 cycles) were studied. The effect of chemical concentrations on the treatment was also examined by making the total amount of chemicals injected to be the same, but using different times of treatment and chemical concentrations (8 cycles for 0.50 M and 4 cycles for 1.00 M). The UCS and CCC were measured and scanning electron microscopy (SEM) analysis was carried out. The SEM images revealed that the sizes of calcium carbonate crystals increased with an increase in chemical concentrations. The UCS values resulting from the treatments using low concentration were slightly greater than those from the treatments using high concentration, given the CCC to be more or less the same. This trend can be attributed to the size of the precipitated crystals, in which the cementation efficiency increases as the crystal size decreases, for a given CCC. Furthermore, in the high concentration treatment, two mineral types of calcium carbonate were precipitated, namely, calcite and amorphous calcium carbonate (ACC). As the crystal shape and morphology of ACC differ from those of calcite, the bonding provided by ACC can be weaker than that provided by calcite. As a result, the conditions of calcium carbonate were affected by test key factors and eventually, contributed to the UCS values.

Recent Discovery of Secondary Mineral Deposits in an Idaho Lava Tube

  • Kesner, David W.
    • Journal of the speleological society of Korea
    • /
    • no.4
    • /
    • pp.33-39
    • /
    • 1996
  • Secondary mineral deposits of gypsum, mirabilite, thenardite, crisobolite have long been known and, in fact, are quite common in lava tubes of southwest Idaho. Until recently, calcium carbonate were found in a few tubes in very small amounts and were thought to be qu are. The recent ‘rediscovery’ of Helen's Hidden Hide - Away lava tube h significantly changed this thinking. The deposits in this lava tube are only quite extensive but extremely varied in structure. As this is a v recent discovery, only basic preliminary work will be presented in t paper. It is hoped this will stimulate intrest for further and more inte study of the lava tubes of southwestern Idaho.

  • PDF