• Title/Summary/Keyword: carbonate factory

Search Result 4, Processing Time 0.017 seconds

Properties Evaluation and flowability of Controlled Low Strength Materials Utilizing Industrial By-Products (산업부산물을 활용한 저강도 고유동 채움재의 유동성 및 물성평가)

  • Cho, Yong-Kwang;Kim, Chun-Sik;Nam, Seong-Young;Cho, Sung-Hyun;Lee, Hyoung-Woo;Ahn, Ji-Whan
    • Journal of Energy Engineering
    • /
    • v.27 no.4
    • /
    • pp.64-69
    • /
    • 2018
  • The purpose of this study is to expand the use of coal ash and coal slag in thermal power plants. In addition, controlled low strength materials was developed to prevent mine settlement. Bottom ash and KR slag are mixed at ratio of 7:3 to expand the use of industrial by-products through carbonate reaction and inhibit the exudation of heavy metals. In order to efficiently fill the abandon mine, workability and physical properties were evaluated according to flow. As a result of elution of harmful substance experiment, it was confirmed that the carbonation reaction inhibited the elution of heavy metals. It was confirmed that the difference in water ratio was the difference in specific surface area of the controlled low strength materials. It was confirmed that the working efficiency is excellent when the flowability is 300mm compared to 260mm. compressive strength measurement result was relatively high at 260mm compared to 300mm because the number of pores due to decrease of water ratio was small.

Verification of Genetic Process for the High-purity Limestone in Daegi Formation by Oxygen-carbon Stable Isotope Characteristics (산소-탄소 안정동위원소특성을 이용한 대기층 고품위 석회석의 생성기작 해석)

  • Kim, Chang Seong;Choi, Seon-Gyu;Kim, Gyu-Bo;Kang, Jeonggeuk;Kim, Sang-Tae;Lee, Jonghyun;Jang, Jaeho
    • Economic and Environmental Geology
    • /
    • v.52 no.1
    • /
    • pp.107-118
    • /
    • 2019
  • Two assertions about the process the formation of the high-purity limestone in the Taebaeksan Basin, categorized into syngenetic and epigenetic origin, are verified on the basis of its oxygen-carbon stable isotopic characteristics. The carbonate rocks sampled from the selective six high-purity limestone mines and several outcrops in the Daegi formation are featured by various colors such as the gray, light gray and dark gray. They show a wide range of oxygen stable isotope ratios (4.5 ~ 21.6 ‰), but a narrow range of carbon stable isotope ratios (-1.1 ~ 0.8 ‰, except for vein calcite), which means that they had not experienced strong hydrothermal alteration. In addition, there is no difference in the range of the oxygen stable isotope ratios by mine and color, and it is similar to the range from surrounding outcrop samples. These results indicate that the effect of the hydrothermal alteration were negligible in the generation of high-purity limestone in deposit scale. Whereas, the carbonate rocks can be divided texturally into two groups on the basis of an oxygen isotope ratio; the massive-textured or well-layered samples (>15 ‰), and the layer-disturbed (or layer-destructed) and showing over two colors in one sample (<15 ‰). In the multi-colored samples, the bright parts are characterized by the very low oxygen stable isotope ratios, compared to the dark parts, implying the increase in brightness of the carbonate rocks could be induced by the interaction between hydrothermal fluid and rock. However, these can be applied in a small scale such as one sample and are not suitable for interpretation of the generation of high-purity limestone as a deposit scale. In particular, the high oxygen isotope ratios from the recrystallized white limestone suggest that hydrothermal fluids are also rarely involved during recrystallization process. In addition, the occurrences of the high-purity limestone orebody strongly support the high-purity limestone in the area are syngenetic rather than epigenetic; the high-purity limestone layers in the area show continuous and almost horizontal shapes, and is intercalated between dolomite layers. Consequently, the overall reinterpretation based on the sequential stratigraphy over the Taebaeksan basin would play an important role to find additional reserves of the high-purity limestone.

Sequence Stratigraphy of the Yeongweol Group (Cambrian-Ordovician), Taebaeksan Basin, Korea: Paleogeographic Implications (전기고생대 태백산분지 영월층군의 순차층서 연구를 통한 고지리적 추론)

  • Kwon, Y.K.
    • Economic and Environmental Geology
    • /
    • v.45 no.3
    • /
    • pp.317-333
    • /
    • 2012
  • The Yeongweol Group is a Lower Paleozoic mixed carbonate-siliciclastic sequence in the Taebaeksan Basin of Korea, and consists of five lithologic formations: Sambangsan, Machari, Wagok, Mungok, and Yeongheung in ascending order. Sequence stratigraphic interpretation of the group indicates that initial flooding in the Yeongweol area of the Taebaeksan Basin resulted in basal siliciclastic-dominated sequences of the Sambangsan Formation during the Middle Cambrian. The accelerated sea-level rise in the late Middle to early Late Cambrian generated a mixed carbonate-siliciclastic slope or deep ramp sequence of shale, grainstone and breccia intercalations, representing the lower part of the Machari Formation. The continued rise of sea level in the Late Cambrian made substantial accommodation space and activated subtidal carbonate factory, forming carbonate-dominated subtidal platform sequence in the middle and upper parts of the Machari Formation. The overlying Wagok Formation might originally be a ramp carbonate sequence of subtidal ribbon carbonates and marls with conglomerates, deposited during the normal rise of relative sea level in the late Late Cambrian. The formation was affected by unstable dolomitization shortly after the deposition during the relative sea-level fall in the latest Cambrian or earliest Ordovician. Subsequently, it was extensively dolomitized under the deep burial diagenetic condition. During the Early Ordovician (Tremadocian), global transgression (viz. Sauk) was continued, and subtidal ramp deposition was sustained in the Yeongweol platform, forming the Mungok Formation. The formation is overlain by the peritidal carbonates of the Yeongheung Formation, and is stacked by cyclic sedimentation during the Early to Middle Ordovician (Arenigian to Caradocian). The lithologic change from subtidal ramp to peritidal facies is preserved at the uppermost part of the Mungok Formation. The transition between Sauk and Tippecanoe sequences is recognized within the middle part of the Yeongheung Formation as a minimum accommodation zone. The global eustatic fall in the earliest Middle Ordovician and the ensuing rise of relative sea level during the Darrwillian to Caradocian produced broadly-prograding peritidal carbonates of shallowing-upward cyclic successions within the Yeongheung Formation. The reconstructed relative sea-level curve of the Yeongweol platform is very similar to that of the Taebaek platform. This reveals that the Yeongweol platform experienced same tectonic movements with the Taebaek platform, and consequently that both platform sequences might be located in a body or somewhere separately in the margin of the North China platform. The significant differences in lithologic and stratigraphic successions imply that the Yeongweol platform was much far from the Taebaek platform and not associated with the Taebaek platform as a single depositional system. The Yeongweol platform was probably located in relatively open shallow marine environments, whereas the Taebaek platform was a part of the restricted embayments. During the late Paleozoic to early Mesozoic amalgamations of the Korean massifs, the Yeongweol platform was probably pushed against the Taebaek platform by the complex movement, forming fragmented platform sequences of the Taebaeksan Basin.

A study on the hydration of sludge from limestone washing process in a steel making factory (제철소 석회석수세슬러지의 수화반응 특성에 관한 연구)

  • Ahn, Ji-Whan;Kim, Ka-Yeoun;Kim, Hwan
    • Resources Recycling
    • /
    • v.3 no.3
    • /
    • pp.32-49
    • /
    • 1994
  • Hydration process is one of the basic carbonation system. Limestone sludge produced in Pohang Iron & Steel Co., Ltd. We tested for identify of hydration characteristics. The result obtained in this study can be summarized as follows; 1. The classify of limestone sludge is type of ground calcium carbonate(-3mm+325mesh)and the major mineral of calcite, and further more high grade(CaO 51%), fine powder(15~22$\mu\textrm{m}$). 2. Limestone sludge mixed two process sludge, first one is washing process sludge and the other one is wet collect kiln dust. The composition rate is about 8:2. Wet collect kiln dust is major mineral of calcite, too. But the sludge is assumed to one by quick lime, slaked lime and unreacted natural limestone. So, the ideal process is dividing of the washing process sludge and wet collect kiln dust. 3. We manufactured of slaked lime from limestone sludge. To investigate the effect of hydration reactor, the experiments was done with various reactor type as magnetic stirrer, shaking incubator and ultrasonic vibration reactor, respectively. Generally, ultrasonic vibration reactor is excellent hydration for limestone sludge and produced very fine slaked lime powder with ideal distribution. 4. The optimum condition is 10% pulp density, when the manufacture of fine slaked lime powder by ultrasonic vibration reactor. And hydration times to compare the results of the study with ultrasonic vibration reactor of generalized most short time(5~10 min). 5. Finally, the dispersive characteristics of slaked lime powder measured 1~5 $\mu\textrm{m}$ from limestone sludge were compared with those of natural limestone ones(10~20$\mu\textrm{m}$), in order to check applicability of slaked lime with hydration process from limestone sludge.

  • PDF