• Title/Summary/Keyword: carbon-nanotubes

Search Result 1,721, Processing Time 0.034 seconds

A Study on Mechanical Properties of Carbon Nanotubes (탄소나노튜브의 기계적 물성에 관한 연구)

  • Nahm, Seung-Hoon;Kim, Dong-Kyun;Park, Jong-Seo;Kim, Am-Kee
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1059-1064
    • /
    • 2003
  • This paper presents an overview of the mechanical properties of carbon nanotubes. The characteristics of carbon nanotubes were briefly introduced. We then present briefly the experimental techniques used to measure mechanical properties and the results obtained by other researchers. A carbon nanotube is too small to be pulled apart with standard tension devices. Manipulators should be used for mechanical testing. We introduced manipulation methods using nanomanipulators under field-emission scanning-electron microscope.

  • PDF

Fabrication Techniques for Carbon Nanotube Field Emitters by Screen Printing

  • Yi, Mann;Jung, Hyuk;Lee, Dong-Gu;Seo, Woo-Suk;Park, Jong-Won;Chun, Hyun-Tae;Koh, Nam-Je
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.655-657
    • /
    • 2002
  • The carbon nanotube emitters for field emission displays were fabricated by screen printing techniques. The pastes for screen printing are composed of organic binders, carbon nanotubes, and some additive materials. Then the pastes were printed on Cr-coated/Ag-printed soda-lime glass substrates. From the I-V characteristics, the turn-on field of SWNT was lower than that of MWNT. The decrease in the mesh size of screen masks resulted in decreasing the turn-on field and increasing the electron emission current. When the carbon nanotubes were mixed with glass frit, glass frit appeared to contribute to the vertically aligning of carbon nanotubes on glass.

  • PDF

Effective in-situ preparation and characteristics of polystyrene-grafted carbon nanotube composites

  • Park Jun Uk;Cho Saehan;Cho Kwang Soo;Ahn Kyung Hyun;Lee Seung Jong;Lee Seong Jae
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.2
    • /
    • pp.41-45
    • /
    • 2005
  • As an effort to explore the effective use of carbon nanotubes as a reinforcing material for advanced nano-composites with polymer matrices, multi-walled carbon nanotubes (MWNTs) were successfully incorporated into polystyrene (PS) via in-situ bulk polymerization. Various experimental techniques revealed that the covalent bonds formed between PS radicals and acid-treated carbon nanotubes are favorable resulting in an effective load transfer. The enhanced storage modulus of the nanocomposites suggests a strong possibility for the potential use in industrial applications.

Influence of Glycidyl Methacrylate Grafted Multi-walled Carbon Nanotubes on Viscoelastic Behaviors of Polypropylene Nanocomposites

  • Shim, Young-Sun;Park, Soo-Jin
    • Carbon letters
    • /
    • v.11 no.4
    • /
    • pp.311-315
    • /
    • 2010
  • In this work, the effect of glycidyl methacrylate grafted multi-walled carbon nanotubes (GMA-MWCNTs) on the viscoelastic behaviors of polypropylene (PP) based nanocomposites was studied. The GMA-MWCNTs/PP was prepared using a bravender at $200^{\circ}C$ by melt mixing as a function of GMA-MWCNT content. The viscoelastic behaviors of GMA-MWCNTs/PP nanocomposites were measured by a rheometer. It was found that the GMA-MWCNTs were homogeneously dispersed in the PP matrix. The GMA-MWCNTs/PP nanocomposites showed higher storage modulus, loss modulus, and shear viscosity compared to pure PP nanocomposites and the maximum value was shown at 2.0 wt% GMA-MWCNTs loading. These results were probably attributed to the strong interfacial interaction between the GMA-MWCNT and the PP matrix.

Estimation of material properties of carbon nanotube composite applying multi-scale method (다중스케일 기법을 이용한 카본나노튜브 복합재료의 물성치 계산)

  • Kim J.T.;Hyun S.J.;Kim Cheol
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.165-168
    • /
    • 2004
  • Carbon nanotube is a geometrical frame-like structure and the primary bonds between two nearest-neighboring atoms act like beam members, whereas an individual atom acts as the joint of the related beam members. The sectional property parameters of these beam members are obtained from molecular mechanics. Computations of the elastic deformation of single-walled carbon nanotubes reveal that the Young's moduli of carbon nanotubes vary with the tube diameter and are affected by their helicity. With increasing tube diameter, the Young's moduli of carbon nanotubes approach the Young's modulus of graphite.

  • PDF

Remedial Junction of Proton Irradiated Single Walled Carbon Nanotubes using Heat Treatment For Solar Energy Harvesting (태양에너지 획득 양성자 조사 단일벽 탄소나노튜브의 열처리에 의한 교정결합)

  • Kim, Tae Gyu;Park, Young Min;Kim, Young Bae;Kim, Dae Weon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.1
    • /
    • pp.29-35
    • /
    • 2019
  • The remedial junction is found in the network of single walled carbon nanotubes after the irradiation of protons not only for the better mechanical strength but also for the higher property of electrical conductivity. The irradiated proton formed a beam transferred sufficient energy to change the sp2 structure of atomic carbon as much as damage of crystalline formation, however it is shown the cross bonding while recovery of structure. This improved network in 2-D atomic chain of carbon is expected to use in a critical part in space energy harvesting system related with the solar radiation.

Nonlinear vibration analysis of carbon nanotube-reinforced composite beams resting on nonlinear viscoelastic foundation

  • M. Alimoradzadeh;S.D. Akbas
    • Geomechanics and Engineering
    • /
    • v.32 no.2
    • /
    • pp.125-135
    • /
    • 2023
  • Nonlinear vibration analysis of composite beam reinforced by carbon nanotubes resting on the nonlinear viscoelastic foundation is investigated in this study. The material properties of the composite beam is considered as a polymeric matrix by reinforced carbon nanotubes according to different distributions. With using Hamilton's principle, the governing nonlinear partial differential equations are derived based on the Euler-Bernoulli beam theory. In the nonlinear kinematic assumption, the Von Kármán nonlinearity is used. The Galerkin's decomposition technique is utilized to discretize the governing nonlinear partial differential equation to nonlinear ordinary differential equation and then is solved by using of multiple time scale method. The nonlinear natural frequency and the nonlinear free response of the system is obtained. In addition, the effects of different patterns of reinforcement, linear and nonlinear damping coefficients of the viscoelastic foundation on the nonlinear vibration responses and phase trajectory of the carbon nanotube reinforced composite beam are investigated.

Wave propagation analysis of carbon nanotubes reinforced composite plates

  • Mohammad Hosseini;Parisa Chahargonbadizade;Mohammadreza Mofidi
    • Structural Engineering and Mechanics
    • /
    • v.88 no.4
    • /
    • pp.335-354
    • /
    • 2023
  • In this study, analysis of wave propagation characteristics for functionally graded carbon nanotube-reinforced composite (FG-CNTRC) nanoplates is performed using first-order shear deformation theory (FSDT) and nonlocal strain gradient theory. Uniform distribution (UD) and three types of functionally graded distributions of carbon nanotubes (CNTs) are assumed. The effective mechanical properties of the FG-CNTRC nanoplate are assumed to vary continuously in the thickness direction and are approximated based on the rule of mixture. Also, the governing equations of motion are derived via the extended Hamilton's principle. In numerical examples, the effects of nonlocal parameter, wavenumber, angle of wave propagation, volume fractions, and carbon nanotube distributions on the wave propagation characteristics of the FG-CNTRC nanoplate are studied. As represented in the results, it is clear that the internal length-scale parameter has a remarkable effect on the wave propagation characteristics resulting in significant changes in phase velocity and natural frequency. Furthermore, it is observed that the strain gradient theory yields a higher phase velocity and frequency compared to those obtained by the nonlocal strain gradient theory and classic theory.