• Title/Summary/Keyword: carbon utilization

Search Result 622, Processing Time 0.027 seconds

산업폐기물의 잔디용 유기질 비료화에 관한 연구 (Utilization of Industrial Waste to Organic Fertilizer for Lawn)

  • 주영규
    • 아시안잔디학회지
    • /
    • 제5권2호
    • /
    • pp.81-86
    • /
    • 1991
  • The sludge, a waste of brewery industries, was examined for potentials as a natural organic fertilizer (or soil conditioner) for lawn. Trial products were measured for changes of physical, chemical properties in laboratory and seed germination and seedling growth in green house were also tested. The results are as the following:1The sludge from distilled liquor brewery contained high quantity of organic matter which had proper physical and chemical properties for lawn fertilizer (natural organic fertilizer, soil conditioner, top-dressing mix) . It showed good characteristics in handling and capabilities to be developed as commercial products for golf courses. 2.Sludge from beer company needs proper treatment to improve physical properties for futher degradiation. It is because aggregation of the sludge particles prevented microbial activities and changing to soluble form. 3.Green carbon can be used as carbon source for organic fertilizer production using brewery sludge, but it should not contain wood extract which inhibit seed germination and seedling growth.

  • PDF

Metabolic Engineering for Improved Fermentation of L-Arabinose

  • Ye, Suji;Kim, Jeong-won;Kim, Soo Rin
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권3호
    • /
    • pp.339-346
    • /
    • 2019
  • L-Arabinose, a five carbon sugar, has not been considered as an important bioresource because most studies have focused on D-xylose, another type of five-carbon sugar that is prevalent as a monomeric structure of hemicellulose. In fact, L-arabinose is also an important monomer of hemicellulose, but its content is much more significant in pectin (3-22%, g/g pectin), which is considered an alternative biomass due to its low lignin content and mass production as juice-processing waste. This review presents native and engineered microorganisms that can ferment L-arabinose. Saccharomyces cerevisiae is highlighted as the most preferred engineering host for expressing a heterologous arabinose pathway for producing ethanol. Because metabolic engineering efforts have been limited so far, with this review as momentum, more attention to research is needed on the fermentation of L-arabinose as well as the utilization of pectin-rich biomass.

A Study on the History of Environmental Policy in South Korea

  • WOO, Hyein
    • 한류연구
    • /
    • 제1권2호
    • /
    • pp.11-18
    • /
    • 2022
  • International negotiation and cooperation for sustainable development currently emphasize three themes on which environmental policies are developed. South Korea emphasizes two of the three themes; climate change and the 2030 Agenda for Sustainable Development. South Korea has taken a leadership role in the international arena regarding these topics, actively participating in the United Nations Framework Convention on Climate Change (UNFCCC) and the negotiations for the 2030 Agenda (Jung, 2018). South Korea has taken a number of steps to address climate change, both domestically and internationally. Domestically, it has implemented several policies and methods to lessen GHG emissions and transition to a low-carbon economy. It has implemented an Emissions Trading Scheme, the largest in the world, a renewable energy portfolio standard, and aimed at accomplishing carbon neutrality by 2050. South Korea is also actively involved in executing the Sustainable Development Goals (SDGs) and has established a national committee to ensure their successful implementation. The group is made up of representatives from the private sector, government ministries, and civil society organizations. It is focused on monitoring the progress of the SDGs and providing policy and financial support for their implementation.

환경 문제의 통합적 이해를 위한 국내외 연구 동향 분석 -탄소 순환 주제의 과학 교육을 중심으로- (An Analysis of Research Trend for Integrated Understanding of Environmental Issues: Focusing on Science Education Research on Carbon Cycle)

  • 박병열;전재돈;이현동;이효녕
    • 한국과학교육학회지
    • /
    • 제40권3호
    • /
    • pp.237-251
    • /
    • 2020
  • 인류가 직면한 지구온난화와 같은 기후 변화에 대한 이슈는 우리의 삶에 직접적인 영향을 미치는 매우 중요한 문제로 이를 극복하기 위해서는 탄소 순환에 대한 통합적 이해를 바탕으로 대기 중 이산화탄소 등의 온실기체 방출량 감축이 필수적이다. 이 연구의 목적은 탄소 순환 교육에 대한 국내외 연구동향을 분석하여, 미래 시민으로 성장할 학생들을 위한 탄소 순환 교육의 가치와 방향을 제시하는데 있다. 이를 위해 '탄소 순환 교육'과 관련하여 국내외 다양한 학술연구 데이터베이스 (RISS, KCI, Google 학술검색, ERIC 등)에서 수집된 52편의 연구들을 대상으로 분석하였다. 그 결과, 탄소 순환 교육을 위해 많은 연구들이 다양한 형태로 이루어져 왔으나, 개발된 프로그램의 낮은 활용 가능성과 검증의 필요성, 정밀하고 일괄적인 학생인식과 수준 조사 도구 개발의 필요성, 교수·학습 모형과 교사를 대상으로 한 관련 연구의 필요성, 교사의 탄소 순환 교육을 위한 자료의 필요성, 그리고 다양한 주제와 소재의 활용이 필요한 것으로 확인되었다. 지구온난화를 포함한 지구 환경 변화에 능동적으로 대처하기 위해서는 학생들의 탄소 순환에 대한 통합적인 이해가 중요하다. 이러한 학습 기회를 지원하기 위해 기존에 개발된 프로그램의 검증을 바탕으로 교육 현장에서 활용할 수 있도록 제공하고, 학생들의 탄소 순환에 대한 이해 수준을 높이고 오개념을 개선할 수 있도록 생활속에서 적용할 수 있는 실질적인 형태의 내용을 교육과정에 포함할 필요가 있다. 또한 교사의 전문성 향상을 위해 다양한 소재와 주제를 포함하는 탄소 순환 교육 사례에 대해 교사 연수를 통해 제공되어야 할 것이다.

PAFC 전극용 카본블랙상 백금촉매 담지에 관한 연구 (Study on the Pt/C Catalyst Preparation for PAFC's Electrode)

  • 김영우;이주성
    • 공업화학
    • /
    • 제4권3호
    • /
    • pp.522-529
    • /
    • 1993
  • 인산형 연료전지용 전극촉매로 많이 사용되고 있는 고가의 백금촉매의 이용가치를 높이기 위하여 촉매 담지시 백금촉매의 미립화가 매우 중요하다. 따라서 카본블랙상에 고분산화된 촉매의 제조를 위하여, 고전적 함침법, pressing & soaking법, 무전해 도금법 및 콜로이드법의 여러 가지 촉매담지방법에 관하여 연구하였다. 그리고 각 촉매담지방법에 대하여 카본블랙상 백금촉매의 담지수율 및 백금촉매 입자크기를 비교하였다. 담지수율은 DCP로 확인하였으며 입자의 크기는 XRD 및 TEM으로 관찰하였다. 결과 콜로이드방법이 백금촉매를 $30{\AA}$ 이하로 미립화할 수 있는 가장 우수한 촉매담지 방법이었으며 카본 담체에 대한 백금촉매의 담지수율은 99% 이상이었다.

  • PDF

Optimization of Fed-Batch Fermentation for Production of Poly-$\beta$-Hydroxybutyrate in Alcaligenes eutrophus

  • Lee, In-Young;Choi, Eun-Soo;Kim, Guk-Jin;Nam, Soo-Wan;Shin, Yong-Cheol;Chang, Ho-Nam;Park, Young-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제4권2호
    • /
    • pp.146-150
    • /
    • 1994
  • Production of poly-$\beta$-hydroxybutyrate (PHB) in fed-batch fermentation was studied. Utilization of carbon for PHB biosynthesis was investigated by using feeding solutions with different ratios of carbon to nitrogen (C/N). It was observed that at a high C/N ratio carbon source was more preferably utilized for PHB accumulation while its consumption for cellular metabolism appeared to be more favored at a low C/N value. A high cell concentration (184 g/l) was achieved when ammonium hydroxide solution was fed to control the pH, which was also utilized as the sole nitrogen source. For the mass production of PHB, two-stage fed-batch operations were carried out where PHB accumulation was observed to be stimulated by switching the ammonium feeding mode to the nitrogen limiting condition. A large amount of PHB (108 g/l) was obtained with cellular content of 80% within 50 hrs of operation.

  • PDF

이산화탄소 지중저장의 국내적용을 위한 위해성 평가 방안 (A risk assessment of $CO_2$ geological storage for domestic application)

  • 이강렬;이대수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.220.1-220.1
    • /
    • 2011
  • In recent years, the importance of Carbon Capture and Storage (hereafter CCS) is growing bigger and bigger. The development and commercialization of CCS technology are concerned for reducing carbon dioxide($CO_2$) emissions. For the most studies, the technology of $CO_2$ storage is known as the geological storage, ocean sequestration, mineral carbonation, industrial utilization, and so on. The geological storage is adjudged the most reasonable technology from economic and environmental aspects. Generally, the $CO_2$ geological storage is comprised of compression - transportation - drilling/injection - storage/management process. The critical problem is a leakage of $CO_2$ in all process. For resolving a leakage problem, it is necessary to predict and build a monitoring system. Those systems are proved safety of a leakage and received positive social perceptions of $CO_2$ geological storage. For those reasons, a risk assessment of $CO_2$ geological storage is required. A risk assessment is an estimated process of the possible effects when spilling $CO_2$. Although numerous studies of risk assessment have studied, it is incomplete to evaluate a risk and disaster quantitatively. The risk assessment will be developed for domestic application and safe $CO_2$ geological storage considering characteristics of Korea.

  • PDF

Nano Electrocatalysis for Fuel Cells

  • Sung, Yung-Eun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.133-133
    • /
    • 2013
  • For both oxygen reduction (ORR) and hydrogen oxidation reactions (HOR) of proton electrolyte membrane fuel cells (PEMFCs), alloying Pt with another transition metal usually results in a higher activity relative to pure Pt, mainly due to electronic modification of Pt and bifunctional behaviour of alloy surface for ORR and HOR, respectively. However, activity and stability are closely related to the preparation of alloy nanoparticles. Preparation conditions of alloy nanoparticles have strong influence on surface composition, oxidation state, nanoparticle size, shape, and contamination, which result from a large difference in redox priority of metal precursors, intrinsic properties of metals, increasedreactivity of nanocrystallites, and interactions with constituents for the synthesis such as solvent, stabilizer, and reducing agent, etc. Carbon-supported Pt-Ni alloy nanoparticles were prepared by the borohydride reduction method in anhydrous solvent. Pt-Ru alloy nanoparticles supported on carbon black were also prepared by the similar synthetic method to that of Pt-Ni. Since electrocatalytic reactions are strongly dependent on the surface structure of metal catalysts, the atom-leveled design of the surface structure plays a significant role in a high catalytic activity and the utilization of electrocatalysts. Therefore, surface-modified electrocatalysts have attracted much attention due to their unique structure and new electronic and electrocatalytic properties. The carbon-supported Au and Pd nanoparticles were adapted as the substrate and the successive reduction process was used for depositing Pt and PtM (M=Ru, Pd, and Rh) bimetallic elements on the surface of Au and Pd nanoparticles. Distinct features of the overlayers for electrocatalytic activities including methanol oxidation, formic acid oxidation, and oxygen reduction were investigated.

  • PDF

Acinetobacter sp. KL-9에의한 indole 분해 및 Indigo 생성의 특성 (Degradation of Indole by Acinetobacter sp. KL-9 with Production of Indigo)

  • 김진완;김진규;이수오;이경
    • 한국미생물·생명공학회지
    • /
    • 제29권1호
    • /
    • pp.43-49
    • /
    • 2001
  • Indole and its derivatives form a class of toxic recalcitrant environmental pollutants, Abacte-rium, strain KL-9 was isolated from soil with indole as a sole source of carbon and nitrogen. KL-9 was identified as Acinetobacter sp. on the basis of 16 S rRNA gene sequence, fatty acid and quinone compositions. This identification was also confirmed by the ability of carbon source utilization and other biochemical tests. The growth of Acinetobacter sp. KL-9 was fastest with 0.3mg/ml of indole as was inhibited by higher than 0.5mg/ml of indole in the medium, KL-9 with indole also produced indigo. The formation of indigo was stimulated inthe presence of glucose, which is not a growth-suppoting carbon source for KL-9. Additional biotransformation evidence showed that anthranilate is an intermediate for the degradation of indole KL-9.

  • PDF

A Study on Strategies of Smart Green City - The Priority Analysis and Application of Planning Technique -

  • Lee, Seo-Jeong;Oh, Deog-Seong
    • KIEAE Journal
    • /
    • 제15권2호
    • /
    • pp.5-17
    • /
    • 2015
  • Purpose: The goal of this research is to identify the planning techniques of Smart Green City with Ubiquitous method and carbon-neutral city planning techniques and to induce the main planning techniques through the analysis of relative importance and practical adaptation. Method: First of all, eighteen planning techniques were derived and categorized into three organization systems and six sectors through literature review and FGI analysis considering the applicability of Ubiquitous service for carbon-neutral city planning techniques. Secondly, based on expert surveys and AHP analysis, the importance of Smart Green City planning techniques was evaluated. Thirdly, using case study, six cases related to Smart Green City were analyzed for the current status of application of planning techniques. Lastly, considering the importance of planning techniques and practical aspects, the characteristics of Smart Green City and its implication were estimated. Result: Energy, Resource and Waste and Transportation sector were identified as important sectors for Smart Green City. In addition, 'Construction of Smart Grid', 'System for Utilization of New & Renewable Energy', 'Smart Resource Circulation Management System', 'Establishment of Public Transportation Information System basis', 'Construction of Pedestrian / Bicycle oriented Road Environment' are essential planning techniques to create Smart Green City.