• Title/Summary/Keyword: carbon steel and stainless steel

Search Result 346, Processing Time 0.023 seconds

Productivity Improvement by developing statistical Model

  • Shin Ill-Chul;Park Jong-Hwan
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.225-231
    • /
    • 2002
  • POSCO $\#2$ Stainless steel making plant produces more than 600 thousand ton per year with a variety of products consisting of austenite and ferrite stainless steel to meet custrmers' needs since 1996. The plant has four different major processes, that are, EAF-AOD-VOD-CC to finally produce semi-product called as slab. In this study, we importantly took AOD process into consideration due to its roles such as to check and verify the final qualities through sampling inspection. But the lead-time from sampling to its verification takes five to ten minutes causing produrtivity loss as muck as the lead-time as a result. Of all indices for quality and process control the plant has, carbon ingredient in liquid type of steel is the most important since it affects in a great way to the characteristics of steel, if any problem. customers not satisfied with quality could issue a claim; therefore there is no way hut to guarantee it before delivery. in this study, to reasonably reduce lead-time ran save a cycle time and finally improve our productivity from a state-or-art alternative just such as applying statistical model based on multi-regression analysis into the A.O.D line by analyzing the statistical and technical relationship between carbon and the relevant some vital independent variables. In consequence, the model with R-square $87\%$ allowed the plant to predict, abbreviating the process in relations to sampling to verification. approximately the value of [C] so that operators could run the process line with reliability on data automatically calculated instead of actual inspection. In the future, we are going to do the best to share this type of methodology with other processes, if possible, to apply into them.

  • PDF

Thermal deformation and thermal stress analysis of pipe during pipe internal fluid freezing (배관의 결빙에 의한 열변형 및 열응력 해석)

  • Park, Yeong-Don;Byeon, Sang-Gyu;Gang, Beom-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.227-237
    • /
    • 1998
  • In case the systems have radioactivity, toxic liquid or expensive fluid, and have to be performed repair work at one point of the system pipe, the formation of an internal ice plug by the removal of heat from the pipe is often consideredas a useful method. In this procedure, an annular jacket is placed around the pipe, and the jacket is then filled with liquid Nitrogen(-196.deg. C). Thermal analysis by the finite element method based on the laboratory experiments has been constructed. The result of the finite element analysis on the experimental model shows to be reasonable, and thus the finite element analysis for different pipe size, material and thickness has been performed to see if the ice plugging procedure in various applications can be safely performed without possibility of damage to the pipe. It has been confirmed that in carbon steel pipes the maximum stress is found around the boundary of the freezing jacket, and the stress increases as pipe thickness increases, but the maximum stress shows no consistency along the increment of the pipe diameter. The maximum stresses appear lower than yield stress in carbon steel. It has been also shown that in stainless steel pipes the maximum stresses are also found around the boundary of the freezing jacket, but almost the same value in spite of different pipe size an thickness, and the maximum stresses show slightly higher than the yield stress of the stainless steel.

Distribution Characteristics of Radionuclies (60Co, 137Cs) During the Melting of Radioactive Metal Waste (방사성 금속폐기물의 용융시 방사성 핵종(60Co, 137Cs)의 분배특성)

  • Min, Byung Youn;Choi, Wang Kyu;Oh, Won Zin;Jung, Chong Hun;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.45 no.6
    • /
    • pp.627-632
    • /
    • 2007
  • A fundamental study on the melt decontamination of metal wastes generated by dismantling the nuclear facility, the melting of metal wastes such as stainless steel and carbon steel have been carried out to investigate the distribution phenomena of the radioisotopes such as $^{60}Co$ and $^{137}Cs$ into the ingot, slag and dust phases by using the various slag types, slag concentration and basicity in an arc furnace. The $^{60}Co$ remained homogeneously in the ingot phase above 90 % and it was barely present in the slag below 10 %. The effect of the slag composition on the distribution for Co-60 was not considerable, but a basic slag former with high fluidity showed effective. $^{137}Cs$ was completely eliminated from the melt of the stainless steel as well as the carbon steel and distributed to the slag and the dust phase.

Effect of Debinding and Sintering Conditions on the Tensile Properties of Water-atomized STS 316 L Parts by Powder Injection Molding (수분무 STS 316L 분말사출성형체의 탈지 및 소결공정에 따른 인장 특성)

  • 윤태식;성환진;안상호;이종수
    • Journal of Powder Materials
    • /
    • v.9 no.4
    • /
    • pp.218-226
    • /
    • 2002
  • The purpose of the present study is to investigate the influence of thermal debinding and sintering conditions on the sintering behavior and mechanical properties of PIMed 316L stainless steel. The water atomized powders were mixed with multi-component wax-base binder system, injection molded into flat tensile specimens. Binder was removed by solvent immersion method followed by thermal debinding, which was carried out in air and hydrogen atmospheres. Sintering was done in hydrogen for 1 hour at temperatures ranging from 1000℃ to 1350℃ The weight loss, residual carbon and oxygen contents were monitored at each stage of debinding and sintering processes. Tensile properties of the sintered specimen varied depending on the densification and the characteristics of the grain boundaries, which includes the pore morphology and residual oxides at the boundaries. The sinter density, tensile strength (UTS), and elongation to fracture of the optimized specimen were 95%, 540 MPa, and 53%, respectively.

A study on the corrosion characteristics of weldment and harmful pollutants in welding process (용접부의 부식특성과 용접공정에서 발생되는 유해물질에 관한 연구)

  • Yun, Yeong-Muk;Lee, Cheol-Gu
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.279-281
    • /
    • 2007
  • This paper reviews corrosion characteristics of welded in the area of 409 Stainless Steel, Aluminium and Carbon steel. The effects of alloying elements and welding conditions on the intergranular-corrosion in weldment of the 409 stainless steels(SS) were investigated. And then this was to investigate factors affecting the composition and concentrations of fumes generated from various types of welding processes. It is also suggested that the direct relationship between the corrosion characteristics and welding type be clarified by experimental and analytical results.

  • PDF

A Study of Magnetic Properties of 410L Stainless Steel for Manufacture of ABS Sensor Ring (410L 스테인레스 강의 ARS 센서 링 제조를 위한 자기적 특성에 관한 연구)

  • 양현수;곽창섭;임종국
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1998.11a
    • /
    • pp.29-39
    • /
    • 1998
  • It is well known for 410L ferritic stainless steel powder to applicate a sensor ring in anti-lock brake system of automobile, several studies, because of its excellent magnetic properties. This study was carried out In investigate the magnetic properties such as the maximum magnetic induction, coercivity and maximum permeability of the materials with functions of sintering density! time and temperature, and concluded as follows; 1. Sintering under the circumstances of hydrogen gas and tile temperature of $1250^{\circ}C$ for 60min. showed that nitrogen was increased, whereas carbon and oxygen decreased in quantities. 2. Both maximum magnetic induction value of 4700Gauss and permeability of 200 were obtained at the maximum sintering density of 6.89g/$cm^3$. Here, the properties showed a linear increasement with increasing the sintering density. 3. Coercivity sharply increased with incresing the sintering density and reached to 7.6Oe at the maximum sintering density of 6.89g/$cm^3$.

  • PDF

A Study on the Nitriding of Sintered Metallic Components by Hollow Cathode Discharge (할로우 캐소드 방전에 의한 금속소결부품의 질화처리에 관한 연구)

  • Kim, Y.C.;Han, C.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.2
    • /
    • pp.80-84
    • /
    • 2012
  • An apparatus was constructed to nitrify small metallic sintered components by using a hollow-cathode discharge plasma method. A stainless steel basket, which contains a sintered part to be nitrified, is potentially grounded and serves as hollow-cathode electrode. Hollow-cathode plasma was produced by supplying the positive voltage to the anode. In this study sintered carbon iron and stainless steel were used as testing specimens. It was shown that an effective nitrifying took place by controlling the total pressure of nitrogen and hydrogen gas and applied voltage.

Effect of Heat Treatments on the Final Hardness of STS 420J2 Martensitic Stainless Steel (420J2마르텐사이트 스테인레스강의 최종경도에 미치는 열처리조건의 영향)

  • Kim, K.D.;Sung, J.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.3
    • /
    • pp.175-183
    • /
    • 1994
  • The effect of batch annealing conditions and austenitizing temperatures on the hardness and microstructural factors were examined by using 420J2 martensitic stainless steel. In spite of the similler hardness after batch annealing, the difference in hardness at the same austenitizing temperature was caused by changes in dissolved carbon during batch annealing. The highest hardness of the specimen was obtained at the batch annealing temperature of $820^{\circ}C$ and austenitizing temperature of $1050^{\circ}C$. The main factor affecting the final hardness of the cold annealed 420J2 specimen was proved to the austenitizing temperature rather than batch annealing temperature.

  • PDF

A Study on thermal deformation behavior of laminates composed of different material layers. (다종 재료층으로 구성된 적층판의 열변형 거동 연구)

  • 정재한;구남서;박훈철;윤광준
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.54-57
    • /
    • 2000
  • Thermal deformation behavior has been investigated for unsymmetric laminates composed of various kinds of material layers, such as stainless steel, aluminum, carbon/epoxy or glass/epoxy. The thermal deformations of unsymmetric laminates were predicted using the classical lamination theory and compared with those obtained from experimental measurement. In the case of unsymmetric laminate composed of stainless steel and aluminum layer, the experimental results were agreed well with the values predicted. But in the case of unsymmetric laminate composed of fiber composite layers, there was a considerable difference of thermal deformation between the prediction and experimental measurement, which may be from the change of material properties of fiber composite layers for temperature variation.

  • PDF

Refining of Steels by $Ar-CO_2$ Plasma (Ar-CO$_2$ Plasma에 의한 강(鋼)의 정련(精鍊))

  • Chang, Sek-Young;Kim, Dong-Ui
    • Journal of Korea Foundry Society
    • /
    • v.6 no.4
    • /
    • pp.284-289
    • /
    • 1986
  • Decarburization phenomena have been studied by plasma in stainless steel, plain carbon steel and cast iron. It was also investigated the movement of impurity element P,S in the plasma jet metal pool. The plasma jet was obtained by $Ar\;-\;CO_2$ gas mixture with 5 kVA DC power source. It produced enough temperature to dissociate into activated oxygen atom by reaction of $CO_2{\leftrightarrows}CO+O^+$ and it reacted with ${\underline{C}}$ in metal pool. Decarburization rate was increased about 5 times in comparing with the conventional induction melted metal pool by $CO_2$ gas decarburization. Even under the Ar plasma jet, decarburization was obtained by agitation of metal bath by $Ar^+$ bombardment and dilution phenomena of carbon atom under the very high plasma temperature. But heavy element P and S are not much removed because they are too heavy in mass to be activated by $Ar^+$ion bombardment. Desulphurization was achieved by $Ar\;-\;CO_2$ plasma in plain carbon steel and cast iron by the reaction of $SO_2({\underline{S}}+O^+)$. But dephosphorization could not be obtained by $Ar\;-\;CO_2$ plasma, because gaseous reaction of phosphorous oxide (${\underline{P}}+O^+$) was not existed.

  • PDF