• Title/Summary/Keyword: carbon oxides

Search Result 316, Processing Time 0.026 seconds

A Study on Calculation of Air Pollutant Emissions from ships at Incheon Port and the Effects of Eco-Friendly Policies (인천항 선박 대기오염물질 배출량 산정 및 친환경 정책 효과에 대한 연구)

  • Lee, Jungwook;Lee, Hyangsook
    • Journal of Korea Port Economic Association
    • /
    • v.38 no.1
    • /
    • pp.129-142
    • /
    • 2022
  • In the past, interest in air pollution was concentrated on greenhouse gases, but in recent years, interest in fine dust has been increasing. The media and environmental organizations continue to emphasize air pollution caused by fine dust. The awareness of fine dust is increasing, and air pollution generated at ports is analyzed to be serious as a domestic factor excluding foreign inflows. Recognizing this, in order to reduce air pollution generated at ports, special laws on improving air quality, such as port areas, have been enacted in Korea, and attempts are being made to curb air pollution caused by ports. In this law, it is a policy that regulates air pollutants generated not only by ships but also throughout ports such as vehicles and unloading machines, and representative are ECA, VSR, and AMP. This study attempted to analyze the effects of these eco-friendly policies at Incheon Port. First of all, a study was conducted to calculate emissions assuming that there was no policy, analyze each policy, and finally calculate and compare actual emissions reflecting all policies. The methodology presented by the European Environmental Administration and the U.S. Environmental Protection Agency was used, and pollutants to be analyzed were analyzed for sulfur oxides (SOX), carbon monoxide (CO), nitrogen oxides (NOX), total floating substances (TSP), fine dust and ultrafine dust (PM10, PM2.5) and ammonia (NH3). As a result of the analysis, it was analyzed that the actual emission reflecting all policies was about 4,097 tons/year, which had an emission reduction effect of about 760 tons/year compared to about 4,857 tons/year when the policy was not reflected. When the effects of each policy were analyzed individually, it was found that ECA 4,111 tons/year, VSR 4,854 tons/year, and AMP 4,843 tons of air pollutant emissions occurred The results of this study can be used as basic data and evidence for policy establishment related to the atmospheric environment at Incheon Port.

Products and pollutants of half dried sewage sludge and waste plastic co-pyrolysis in a pilot-scale continuous reactor (반 건조 하수슬러지와 폐플라스틱 혼합물의 파일롯 규모 연속식 열분해에 의한 생산물과 발생 오염물질)

  • Kim, YongHwa;Chun, Seung-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.327-337
    • /
    • 2017
  • A continuous low temperature ($510^{\circ}C{\sim}530^{\circ}C$) pyrolysis experiment in a pilot-scale of 85.3 kg/hr was carried out by the mixed feedstock of half dried digested sewage sludge and waste plastics. As a result, the amount of pyrolysis gas generated was maximum 68.3% of input dry mass and scored $40.9MJ/Nm^3$ of lower heating value (LHV), and the percentage of air inflow caused by continuous pyrolysis was 19.6%. The oil was produced 4.2% of the input dry mass, and the LHV was 32.5 MJ/kg. The sulfur and chlorine contents, which could cause corrosion of the facility, were found to be 0.2% or more respectively. The carbide generated was 27.5% of the input dry mass which shows LHV of 10.2 MJ/kg, and did not fall under designated waste from the elution test. The concentration of carbon monoxide, sulfur oxides and hydrogen cyanide of emitted flu gas from pyrolysis gas combustion was especially high, and dioxin (PCDDs/DFs) was within the legal standards as $0.034ng-TEQ/Sm^3$. Among the 47 water pollutant contents of waste water generated from dry flue gas condensation, several contents such as total nitrogen, n-H extract and cyanide showed high concentration. Therefore, the merge treatment in the sewage treatment plants after pre-treatment could be considered.

Combustion Performance Test of Syngas Gas in a Model Gas Turbine Combustor - Part 2 : NOx/CO emission Characteristics, Temperature Characteristics and Flame Structures (모델 가스터빈 연소기에서 합성가스 연소성능시험 - Part 2 : NOx/CO 배출특성, 온도특성, 화염구조)

  • Lee, Min Chul;Yoon, Jisu;Joo, Seong Pil;Yoon, Youngbin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.8
    • /
    • pp.639-648
    • /
    • 2013
  • This paper describes on the NOx/CO emission characteristics, temperature characteristics and flame structures when firing coal derived synthetic gas especially for gases of Buggenum and Taean IGCC. These combustion characteristics were observed by conducting ambient-pressure elevated-temperature combustion tests in GE7EA model combustor when varying heat input and nitrogen dilution ratio. Nitrogen addition caused decrement in adiabatic flame temperature, thus resulting in the NOx reduction. At low heat input condition, nitrogen dilution raised the CO emission dramatically due to incomplete combustion. These NOx reduction and CO arising phenomena were observed at certain flame temperature of $1500^{\circ}C$ and $1250^{\circ}C$, respectively. As increasing nitrogen dilution, adiabatic flame temperature and combustor liner temperature were decreased and singular points were detected due to change in flame structure such as flame lifting. From the results, the effect of nitrogen dilution on the NOx/CO and flame structure was examined, and the test data will be utilized as a reference to achieve optimal operating condition of the Taean IGCC demonstration plant.

Ozone-Enhanced Remediation of Diesel-Contaminated Soil (II): A Column Study (Ozone에 의한 유류오염토양 복원 연구 (II) : 토양 컬럼상에서의 오존 산화)

  • Choi, Heechul;Heechul;Lim, Hyung-Nam;Kim, Kwang-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.10
    • /
    • pp.1825-1832
    • /
    • 2000
  • Column experiments were conducted by using soil columns, to investigate feasibility and efficiency of in-situ ozone enhanced remediation for diesel-contaminated soil. The injection of gaseous ozone into soil column revealed the enhanced decomposition of ozone due to the catalytic reaction between ozone and metal (e.g., Fe, Mn etc.) oxides as evidenced by as much as 25 times shorter half-life of ozone in a sand packed column than in a glass beads packed column. Substantial retardation in the transport of and the consumption of ozone were observed in the diesel contaminated field soil and sand packed columns. After 16 hrs ozonation, 80% of the initial mass of diesel (as diesel range organic) concentration of $800{\pm}50mg/kg$, was removed under the conditions of the flow rate of 50mL/min and $6mg-O_3/min$. Whereas, less than 30% of diesel was removed in the case of air injection. Analysis of the residual TPH(total petroleum hydrocarbon) and selected 8 aliphatics of diesel compounds in the inlet and the outlet of the column confirmed that diesel nonselectively reacted with ozone and then shifted to lower carbon numbered molecules. Water content also was found to be an important parameter in employing ozone to the hydrocarbon-contaminated soil.

  • PDF

A Biogeochemical Study on the Heavy Metal Leaching from Coal Fly Ash Disposed by Dangjin Fire Plant in the Coastal Environment (당진화력발전소의 석탄회 연안매립과 중금속 원소의 용출에 대한 생지화학적 연구)

  • Cho, Kyu-Seong;Roh, Yul;Chung, Duk-Ho
    • Journal of the Korean earth science society
    • /
    • v.28 no.1
    • /
    • pp.112-122
    • /
    • 2007
  • It is known that coal-derived fly ashes have the unique chemical composition and mineralogical characteristics. Since iron oxides in coal fly ash are enriched with heavy metals, the subsurface media including soils, underground water, and sea water are highly likely contaminated with heavy metals when the heavy metals are leached from fly ashes by water-fly ash interactions. The purpose of this study was to investigate how indigenous bacteria affect heavy metal leaching and mineralogy in fly ash slurry during the fly ash-seawater interactions in the ash pond located in Dangjin seashore, Korea. The average pH of ash pond seawater was 8.97 in nature. Geochemical data showed that microbial activity sharply increased after the 7th day of the 60-day course batch experiments. Compared with other samples including autoclaved and natural samples, ${SO_4}^{2-}$ was likely to decrease considerably in the fly ash slurry samples when glucose was added to stimulate the microbial activity. Geochemical data including Eh/pH, alkalinity, and major and trace elements showed that the bacteria not only immobilize metals from the ash pond by facilitating the chemical reaction with Mn, Fe, and Zn but may also be able to play an important role in sequestration of carbon dioxide by carbonate mineral precipitation.

The Electrochemical Studies of Non-enzymatic Glucose Sensor on the Nickel Nanoparticle-deposited ITO Electrode (ITO 전극 위에 고정된 니켈 나노 입자를 이용한 무효소 혈당센서에 관한 전기화학적인 연구)

  • Oh, In-Don;Kim, Samantha;Choi, Young-Bong
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.3
    • /
    • pp.164-171
    • /
    • 2014
  • A highly sensitive and selective non-enzymatic glucose sensor has gained great attention because of simple signal transformation, low-cost, easily handling, and confirming the blood glucose as the representative technology. Until now, glucose sensor has been developed by the immobilization of glucose oxidase (GOx) on the surface of electrodes. However although GOx is quite stable compared with other enzymes, the enzyme-based biosensors are still impacted by various environment factors such as temperature, pH value, humidity, and toxic chemicals. Non-enzymatic sensor for direct detecting glucose is an attractive alternative device to overcome the above drawbacks of enzymatic sensor. Many efforts have been tried for the development of non-enzymatic sensors using various transition metals (Pt, Au, Cu, Ni, etc.), metal alloys (Pt-Pb, Pt-Au, Ni-Pd, etc.), metal oxides, carbon nanotubes and graphene. In this paper, we show that Ni-based nano-particles (NiNPs) exhibit remarkably catalyzing capability for glucose originating from the redox couple of $Ni(OH)_2/NiOOH$ on the surface of ITO electrode in alkaline medium. But, these non-enzymatic sensors are nonselective toward oxidizable species such as ascorbic acid the physiological fluid. So, the anionic polymer was coated on NiNPs electrode preventing the interferences. The oxidation of glucose was highly catalyzed by NiNPs. The catalytically anodic currents were linearly increased in proportion to the glucose concentration over the 0~6.15 mM range at 650 mV versus Ag/AgCl.

Crystal Structure of an Acetylene Sorption Complex of Vacuum Dehydrated Fully Cadmiumfiil-Exchanged Zeolite A (완전히 카드뮴 이온으로 교환된 제올라이트 A를 진공 탈수한 후 아세틸렌 기체로 흡착한 결정구조)

  • Koh, Kwang-Nak;Han, Young-Wook;Kim, Yang
    • Korean Journal of Crystallography
    • /
    • v.2 no.1
    • /
    • pp.17-22
    • /
    • 1991
  • The crystal structure of an acetylene sorption complex of vacuum dehydrated fully Cda+ _exchanged zeolite A has been determined from three-dimensional X-ray diffraction data gathered by counter method. The structure was solved and refined in the cubic space group Pm3m at 294(1) K, a=12.202(3) A and Z=1. We crystal was prepared by dehydration at 723 K and 2.67×104 Pa for 2 days, followed by exposure to 1.60×104 Pa of acetylene gas at 298(1) K. All six Cd2+ions per unit cell are associated with 6-oxgen rings of the aluminosilicate framework. They are distributed over two distinguished threefold axes of unit cell; two of these Cd2+ ions are recessed 0.694 into the sodalite unit from (111) plane of three 0(3)'s and each approaches three framework oxides; the other four Cd2+ ions extend approximately 0.586A into the large cavity. The four Cd2+ ions are in a near tetrahedral environment, 2.220(9)A from·three framework oxide ions and 2.74(7) A from each carbon atom of an acetylene molecule(which is here counted as a monodentate ligand). Full matrix least squares refinement converged to the final error indices R1=0.093 and R2=0.105 using the 292 independent reflections for which I>3σ(I).

  • PDF

Hydrodynamic Properties of Interconnected Fluidized Bed Chemical-Looping Combustors (상호 연결된 유동층 매체 순환식 연소로의 수력학적 특성)

  • Son, Sung Real;Go, Kang Seok;Kim, Sang Done
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.185-192
    • /
    • 2010
  • The chemical-looping combustion(CLC) has advantages of no energy loss for separation of $CO_2$ without $NO_x$ formation. This CLC system consists of oxidation and reduction reactors where metal oxides particles are circulating through these two reactors. In the present study, the reaction kinetic equations of iron oxide oxygen carriers supported on bentonite have been determined by the shrinking core model. Based on the reactivity data, design values of solid circulation rate and solids inventory were determined for the rector. Two types of interconnected fluidized bed systems were designed for CLC application, one system consists of a riser and a bubbling fluidized bed, and the other one has a riser and two bubbling fluidized beds. Solid circulation rates were varied to about $30kg/m^2s$ by aeration into a loop-seal. Solid circulation rate increases with increasing aeration velocity and it increases further with an auxiliary gas flow into the loop-seal. As solid circulation rate is increased, solid hold up in the riser increases. A typical gas leakage from the riser to the fluidized bed is found to be less than 1%.

A Study of Consequence Analysis of Physical Explosion Damage in CO2 Storage Tank (CO2 임시 저장 탱크에서의 물리적 폭발에 따른 피해영향 고찰)

  • Seo, Doo-Hyoun;Jang, Kap-Man;Lee, Jin-Han;Rhie, Kwang-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.2
    • /
    • pp.12-19
    • /
    • 2015
  • $CO_2$ is non-flammable, non-toxic gas and not cause of chemical explosion. However, various impurities and some oxides can be included in the captured $CO_2$ inevitably. While the $CO_2$ gas was temporarily stored, the pressure in a storage tank would be reached above 100bar. Therefore, the tank could occur a physical explosion due to the corrosion of vessel or uncertainty. Evaluating the intensity of explosion can be calculated by the TNT equivalent method generally used. To describe the physical explosion, it is assumed that the capacity of a $CO_2$ temporary container is about 100 tons. In this work, physical explosion damage in a $CO_2$ storage tank is estimated by using the Hopkinson's scaling law and the injury effect of human body caused by the explosion is assessed by the probit model.

High Energy Density Germanium Anodes for Next Generation Lithium Ion Batteries (다음세대 리튬이온 배터리용 고에너지 밀도 게르마늄 음극)

  • Ocon, Joey D.;Lee, Jae Kwang;Lee, Jaeyoung
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.1-13
    • /
    • 2014
  • Lithium ion batteries (LIBs) are the state-of-the-art technology among electrochemical energy storage and conversion cells, and are still considered the most attractive class of battery in the future due to their high specific energy density, high efficiency, and long cycle life. Rapid development of power-hungry commercial electronics and large-scale energy storage applications (e.g. off-peak electrical energy storage), however, requires novel anode materials that have higher energy densities to replace conventional graphite electrodes. Germanium (Ge) and silicon (Si) are thought to be ideal prospect candidates for next generation LIB anodes due to their extremely high theoretical energy capacities. For instance, Ge offers relatively lower volume change during cycling, better Li insertion/extraction kinetics, and higher electronic conductivity than Si. In this focused review, we briefly describe the basic concepts of LIBs and then look at the characteristics of ideal anode materials that can provide greatly improved electrochemical performance, including high capacity, better cycling behavior, and rate capability. We then discuss how, in the future, Ge anode materials (Ge and Ge oxides, Ge-carbon composites, and other Ge-based composites) could increase the capacity of today's Li batteries. In recent years, considerable efforts have been made to fulfill the requirements of excellent anode materials, especially using these materials at the nanoscale. This article shall serve as a handy reference, as well as starting point, for future research related to high capacity LIB anodes, especially based on semiconductor Ge and Si.