• Title/Summary/Keyword: carbon neutral strategy

Search Result 18, Processing Time 0.029 seconds

Analysis of Regional Implementation Conditions and Industrial Strategies for Carbon Neutrality in China (중국 탄소중립 지역별 이행여건 및 산업전략 분석)

  • Yu-jeong Jeon;Su-han Kim
    • Analyses & Alternatives
    • /
    • v.7 no.2
    • /
    • pp.179-207
    • /
    • 2023
  • Carbon neutrality, the international community's practical challenge in response to climate change, is becoming a key industrial strategy for the future development of nations. Despite concerns that China, as an economic powerhouse in the G2, may face challenges leading global climate change efforts due to its high-carbon-emitting industrial structure, it is leveraging carbon neutrality to enhance its industrial competitiveness. The Chinese government has formulated national policies for achieving carbon neutrality and detailed sector-specific plans to implement them. In particular, it aims to leverage carbon neutrality industrial strategies as a lever for adjusting the domestic industrial structure and fostering new industries, at the same time responding to international climate norms and external pressures. However, the effectiveness of carbon-neutral industrial strategies is expected to vary based on regional conditions such as economic and industrial levels. This article analyzes the regional conditions for implementing carbon neutrality in China, as well as the contents and characteristics of major industrial policies. Due to differing levels of economic development and industrial structures, significant variations in carbon emissions, size, emission sources, and efficiency are inevitable across regions. These disparities introduce diverse initial conditions and endogenous factors in pursuing carbon-neutral goals, limiting the direction and implementation of carbon-neutral industrial strategies favoring certain regions. In particular, the extent of policy autonomy granted to local governments regarding carbon neutrality implementation will influence the regional dynamics of central-local environmental governance. Consequently, it is crucial to emphasize regional monitoring alongside comprehensive national research to accurately navigate the path towards carbon neutrality in China. In summary, the article underscores the importance of understanding regional variations in economic development, industrial structure, and policy autonomy for successful carbon neutrality implementation in China. It highlights the need for regional monitoring and comprehensive national research to determine a more precise direction for achieving carbon neutrality.

Interaction among Megatrends and the Paradigm of Low-Carbon Society

  • Yoo, Eui Sun
    • STI Policy Review
    • /
    • v.2 no.1
    • /
    • pp.13-34
    • /
    • 2011
  • This paper investigates the interaction among the paradigm of Low-Carbon Society (LCS) and the megatrends in field of population, environment, geopolitics, and energy. The paradigm of LCS is regarded as a 'social will' trend, distinguished from other 'phenomenal' trends. The qualitative analysis shows that the megatrends and the LCS paradigm have positive/neutral/negative impacts on one another, while some impacts can be reversed to other types of impact with the conditions having ripened. In quantitative analysis, the correlation between the LCS paradigm and the economy is traced with our Integrated Assessment Model, looking into such response options as population control, increase in labor force participation, and productivity enhancement to maintain utility level despite the pursuit of LCS paradigm. The future challenges in national strategy and S&T policy are suggested, based on the interaction analyses.

Design for Carbon Neutral Arboretum in Gwangju Metropolitan City (광주광역시 탄소중립 수목원 설계)

  • Kim, Hoon Hee
    • KIEAE Journal
    • /
    • v.9 no.3
    • /
    • pp.61-68
    • /
    • 2009
  • Gwangju Metropolitan Government & Ministry of Environment have signed a model city in response to Climate Change agreement. The agreement calls for Gwangju to cut greenhouse gas emissions 10% below 2005 levels by 2015. Gwangju has seen this agreement as an opportunity to cut pollution and conserve the environment as well as to reinvigorate local economy. According to policy of Gwangju, Gwangju held design competition for Gwangju City Arboretum on march, 2009. The purpose of design competition was to give a wide publicity to Gwangju as Hub City of Asian Culture and construct carbon-neutral arboretum in accordance with the policy of 'Low-Carbon and Green Growth'. First of all, a design concept of arboretum is 'winding, round, overlay 'to reflect the landscape of Nam-do which is surrounded by mountains and river flows through the village. Second, the arboretum has five different places with these themes - Forest of Festivals, Health, Nature, Nostalgia, Education and Future. Each place has a symbolic theme park and different flow planning respectively. Third, the most critical point is that the arboretum is a carbon-neutral park. Gwangju arboretum will soon be developed in metropolitan sanitary landfill and constructed as the O2 arboretum based on low carbon strategy. Fourth, the O2 arboretum suggests specialized issue : 'Energy Saving', 'Recycling System', 'Green Network', 'Water System(rainwater maintenance and wetland development)'. Besides, main buildings(greenhouse, visitor center, Nam-do experience exhibition hall, and forest museum) is designed in consideration of harmony with topography character, surroundings. Also, planting will be a multilayer plant based on native landscape trees in consideration of function and the growth characteristics.

Feasibility study of LFG-MGT power generation system with $CO_2$ fixation development (농작물의 $CO_2$ 고정화 연계 LFG-MGT 시스템의 타당성 연구)

  • Park, Jung-Keuk;Hur, Kwang-Beom;Rhim, Sang-Gyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.821-824
    • /
    • 2009
  • LFG-MGT CHP system development project with $CO_2$ enrichment in greenhouses was introduced. LFG is produced from the anaerobic digestion of landfilled waste and it has been utilized for power/heat generation since it contains around 50% of $CH_4$. Utilization of LFG from small scale landfill is also needed as well as large scale landfill. However, due to economy of scale, it is very difficult to develop business model. In this context, combining CHP system with greenhouses is considered as feasible option for LFG utilization. LFG-MGT CHP system with $CO_2$ fixation in greenhouses has been derived as an active greenhouse gas reduction strategy, The focus of the system is beyond carbon neutral LFG utilization to neutral carbon absorption. The system is feasible in terms of direct and indirect $CO_2$ emission reduction with more economical way.

  • PDF

Designing and Creating a Model Garden to Demonstrate Carbon Reduction - Case Study of Carbon Reduction Model Garden at the Sejong National Arboretum - (탄소저감 현장 실증을 위한 모델정원 설계와 조성 - 국립세종수목원 탄소저감 모델 정원을 사례로 -)

  • Park, Byunghoon;Seo, Jayoo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.6
    • /
    • pp.75-87
    • /
    • 2023
  • This study presents an experimental design for demonstrating the role of nature-based solutions to climate change in the landscape and garden sector. The study suggests spatial strategies for a carbon-neutral society and its role as a cultural industry. This paper describes the use of a low-maintenance garden as part of a strategy for carbon reduction with the goal of protecting the environment and forming a carbon-neutral society. To this end, this study involved the design and construction of a realistic model garden to provide scientific data on the functions, spatial elements, and carbon neutrality of carbon-reducing gardens. The target site is located in the Sejong National Arboretum. The test area in which the carbon-reducing function is measured is located in the centre of the site, and other spaces include dry gardens, community gardens, and flower gardens intended for exhibition and relaxation. The experimental area is divided into several smaller areas within which the carbon-reducing effect is analysed according to the amount of biochar installed, the planting density, and the plant species present. The application of facilities and construction methods to promote carbon reduction were based on the method known as '10 types of carbon gardening for the earth'. In the model garden, we employed rainwater utilization facilities and used low-carbon certified wood and local materials. The carbon reduction effect of each facility and construction method is compared and presented here. The results are expected to serve as an important basis for realizing a carbon-neutral society and can be used as a reference in various fields that require sustainable development, such as the garden industry.

Development and Application of Carbon Emissions Estimation Methodology During the Life Cycle of Road (도로의 전과정 탄소배출량 산정방법 개발 및 적용)

  • Kwak, In-Ho;Park, Kwang-Ho;Hwang, Young-Woo;Park, Ji-Hyoung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.6
    • /
    • pp.382-390
    • /
    • 2012
  • Global warming has been hot issue world wide. Korea has been dealing with the global issue under the slogan of low carbon and green-growth such as setting national greenhouse gas (GHG) reduction targets and allocation to each industrial sector. Infrastructure construction, in which enormous social overhead capital (SOC) is input, has great role as one of the actions. Road is one of the representative infrastructure and large amount of resources is utilized in its construction, operation and maintenance stage. The estimation methodology of life cycle carbon emissions was developed and applied to a case study of highway currently under construction in this study. Also, total carbon emissions of all the highway in South Korea at present (2009) and cumulative carbon emissions from 2009 to 2020 were estimated using the results of case study.

Hydrogen Policy Trends and Current Status of Hydrogen Technology Development by Value Chain (수소 정책 동향과 밸류체인별 수소 기술 개발 현황)

  • JAE EUN SHIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.562-574
    • /
    • 2023
  • Carbon neutrality has been suggested to overcome the global climate crisis caused by global climate change. Hydrogen energy is a major way to achieve carbon neutrality, and the developments and policies of hydrogen technology have been proposed to achieve this goal. To commercialize hydrogen energy resources, it is necessary to understand the overall value chain composed of hydrogen production, storage, and utilization and to present the direction of technological developments. In this paper the hydrogen strategies of major countries, including Europe, the United States, Japan, China, and South Korea will be analyzed, and hydrogen technologies by value chain will also be explain. This paper will contribute to understanding the overall hydrogen policy and technology, as both policy and technology are summarized.

Hydrogen and E-Fuel Production via Thermo-chemical Water Splitting Using Solar Energy (국제 공동 연구를 통한 태양에너지 활용 열화학 물분해 그린 수소 생산 연구 및 E-fuel 생산 연구 동향 보고)

  • Hyun-Seok Cho
    • New & Renewable Energy
    • /
    • v.20 no.1
    • /
    • pp.110-115
    • /
    • 2024
  • Global sustainable energy needs and carbon neutrality goals make hydrogen a key future energy source. South Korea and Japan lead with proactive hydrogen policies, including South Korea's Hydrogen Law and Japan's strategy updates aiming for a hydrogen-centric society by 2050. A notable advance is the solar thermal chemical water-splitting cycle for green hydrogen production, spotlighted by Korea Institute of Energy Research (KIER) and Niigata University's joint initiative. This method uses solar energy to split water into hydrogen and oxygen, offering a carbon-neutral hydrogen production route. The study focuses on international collaboration in solar energy for thermochemical water-splitting and E-fuel production, highlighting breakthroughs in catalyst and reactor design to enhance solar thermal technology's commercial viability for sustainable fuel production. Collaborations, like ARENA in Australia, target global carbon emission reduction and energy system sustainability, contributing to a cleaner, sustainable energy future.

Agroforestry Site-suitability Analysis in Suan-gun, Hwanghaebuk-do, North Korea (임농복합경영 대상지 적지 분석: 북한 황해북도 수안군을 중심으로)

  • Sookyung, Kwon;Soyoung, Park;Soonduck, Kwon
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.4
    • /
    • pp.667-675
    • /
    • 2022
  • Agroforestry is an ecological and economic land-use system that enables sustainable agriculture by combining forestry, agriculture, and livestock industries. North Korea chose agroforestry as a strategy for the restoration of sloping land and deforested land. Agroforestry was proposed for the inter-Korean forest cooperation subcommittee meeting and is currently highlighting carbon removal and promoting the '2050 Carbon Neutral Strategy' and 'Korea Peninsula Green Détente.' The study area, Suan-gun, Hwanghaebuk-do, is a constant deforestation monitoring area and a pilot site for management by the International Center for Research in Agroforestry. The requirements for agroforestry were analyzed through literature analysis. The agroforestry site-suitability map was visualized by applying GIS overlap analysis. Approximately 8,839 ha of sloping area was selected as suitable for agroforestry management, which is about 15% of Suan. We compared the map with Google Earth images and visually detected the land use status, such as agroforestry in Suan, to verify the results. As a future study, we will consider both natural-environment and socioeconomic factors and evaluate the relative importance of the factors to produce a high-accuracy agroforestry sitesuitability map at the national scale with the goal of producing basic data for the inter-Korea forest cooperation policy for long-term goals.