• Title/Summary/Keyword: carbon metabolism

Search Result 254, Processing Time 0.025 seconds

Effect of Dietary Perilla Seed Oil on Lipid Metabolism in Rats (들깨유가 흰쥐의 체내 지질대사에 미치는 영향에 관한 연구)

  • 장순덕;노숙령
    • Journal of Nutrition and Health
    • /
    • v.24 no.5
    • /
    • pp.408-419
    • /
    • 1991
  • The effects of various dietary fats on plasma lipids. liver lipids, and Plasma Peroxide levels were studied in rats fed for 6 wk with diets containing 15 wt% fat, as sesame oil. raw perilla seed oil. roasted perilla seed oil, heated perilla seed oil. mackerel oil or beef tallow. TBA values of these lipids during 4 wk storage, and linolenic acid contents of three kinds of perilla seed oil were also measured. Linolenic acid contents of raw perilla seed oil. roasted perilla seed oil and heated perilla seed oil were 62.3%, 61.6% and 53.1% respectively. Raw perilla seed oil showed the lowest rate of lipid peroxidation after 4 wk storage at 4$^{\circ}C$, and mackerel oil showed the highest peroxidation rate. The plasma cholesterol levels of rats consuming diets in which the carbohydrate was rice were not affected by n-3 PUFA. Rather, the degree of peroxidation seems to have a direct effect on cholesterol levels as shown by the hypocholesterolemic effect of raw perilla seed oil and beer tallow. However. the HDL-cholesterol level was greater in rats fed either roasted perilla seed oil or mackerel oil. Rats fed roasted perilla seed oil and raw perilla seed oil had lower levels of plasma triglycerides than rats fed beef tallow. In rats fed roasted perilla seed oil, the total lipid and cholesterol contents of liver were significantly lower than in those fed the other kinds of perilla seed oil. The plasma lipid peroxide levels were lower in rats fed either roasted perilla seed oil or beef tallow.

  • PDF

Enhancement of L-Lactic Acid Production in Lactobacillus casei from Jerusalem Artichoke Tubers by Kinetic Optimization and Citrate Metabolism

  • Ge, Xiang-Yang;Qian, He;Zhang, Wei-Guo
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.101-109
    • /
    • 2010
  • Efficient L-lactic acid production from Jerusalem artichoke tubers, by Lactobacillus casei G-02, using simultaneous saccharification and fermentation (SSF) in a fed-batch culture, is demonstrated. A kinetic analysis of the SSF revealed that the inulinase activity was subjected to product inhibition, whereas the fermentation activity of G-02 was subjected to substrate inhibition. It was also found that the intracellular NADH oxidase (NOX) activity was enhanced by the citrate metabolism, which dramatically increased the carbon flux of the Embden-Meyerhof-Parnas (EMP) pathway, along with the production of ATP. As a result, when the SSF was carried out at $40^{\circ}C$ after an initial hydrolysis of 1 h and included a sodium citrate supplement of 10 g/l, an L-lactic acid concentration of 141.5 g/l was obtained after 30 h, with a volumetric productivity of 4.7 g/l/h. The conversion efficiency and product yield were 93.6% of the theoretical lactic acid yield and 52.4 g lactic acid/l00 g Jerusalem artichoke flour, respectively. Such a high concentration of lactic acid with a high productivity from Jerusalem artichokes has not been reported previously, making G-02 a potential candidate for the economic production of L-lactic acid from Jerusalem artichokes on a commercial scale.

EFFECTS OF UREA NITROGEN ON THE METABOLISM OF PLANTS (1) Studies on Nitrogen Absorption and Metabolism in Sunflower Leavessprayed with Urea Solution

  • KIM, Joon Ho
    • Journal of Plant Biology
    • /
    • v.4 no.2
    • /
    • pp.51-61
    • /
    • 1961
  • In order to detect the way of absorption and metaboism of the urea it is sprayed on the surface of the leaves of sunflower. The sunflowers used in this study are grown in different conditions such that the one in nittogen aboundant and the other in nitrogen deficient soil, respectively. The urea-N, ammonia-N, amide-N, and 80% alcohol soluble-N in the leaves were quantitatively determined. All of the nitrogenous components measured are generally tended to increased with rising the concentration of urea except only amide-N at 24 hours after sprayed, and these were highly significances. It seemed that hydrolizing of urea into ammonia and carbon dixide and the assimilation of ammonia into other organic nitrogenous constituents were rapid in the young leaves than in the mature. It is interest that the amide content, in the young leaves and nitrogen defieient one were enhanced with the increasing concentration of urea, although in the mature leaves it did not show any change in the urea treatment. It is presumed that the assimilation rate of ammonia and the urease activity were lower in the matture leaves than in the young and nitrogen deficient leaves. No significance at 5% level showed all of the nitrogenous components except total nitrogen between nitrogen abundant and deficent leaves. Urea content was a high peak at first 12 hours, ammonia at 48 hours, and amide and alcohol soluble nitrogen at 96 hours, whence decrease4d the content of these constituents gradually. The total nitrogen content is not incrased obviously by only one time of urea spray in this study. When the concentration of urea was relatively high there appeared the wilting spots on t도 edge of leaves. As a whole, it seemed that sprayed urea was rapidly absorbed and taken part in nitrogen metabolism within relatively short period.

  • PDF

Effect of Allopurinol Pretreatment on the Hepatic Xanthine Oxidase Activity in $CCl_4$-Treated Rats (흰쥐에 사염화탄소 투여시간 Xanthine Oxidase활성에 미치는 Allopurinol의 영향)

  • 윤종국;이혜자;이상일
    • Biomedical Science Letters
    • /
    • v.1 no.1
    • /
    • pp.37-43
    • /
    • 1995
  • To evaluate an effect of xanthine oxidase(XO) reaction system on the carbon tetrachloride($CCl_4$) metabolism, $CCl_4$ was given twice at 0.1ml/100g body wt. at intervals of 18 hour to the rats and those pretreated with allopurinol (50mg/kg. body wt.). The influence of XO on the metabolism of $CCl_4$ was focused on the degree of liver damage and the activities of a $CCl_4$ metabolizing marker enzyme, glucose-6-phosphatase. The increasing rate of liver weight per body weight and the levels of serum alanine aminotransferase to the control group were more decreased in allopurinol-pretreated rats than in those treated with $CCl_4$ alone. The liver XO activities were more increased in $CCl_4$-treated rats than the control group and the $CCl_4$-treated rats pretreated with allopurinol showed a decreased activities of XO compared to the $CCl_4$-treated rats. The type conversion (type D --> type O) rate was more decreased tendency in allopurinol pretreated rats than those treated $CCl_4$ alone. In dialyzed liver enzyme preparations, all of the xanthine oxidase activities: $CCl_4$-treated, allopurinol and $CCl_4$-treated rats pretreated with allopurinol showed the more increased Vmax value than the control group, but similar Km value. Moreover, $CCl_4$-treated rats pretreated with allopurinol showed the more increased Vmax value than the group treated with $CCl_4$ alone. In conclusion, it can not be negate the possibility of metabolism of $CCl_4$ by the xanthine oxidase enzyme system.

  • PDF

The Influence of Different Fiber and Starch Types on Nutrient Balance and Energy Metabolism in Growing Pigs

  • Wang, J.F.;Zhu, Y.H.;Li, D.F.;Jorgensen, H.;Jensen, B.B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.2
    • /
    • pp.263-270
    • /
    • 2004
  • A repeated $4{\times}4$ Latin square design was conducted with eight ileal cannulated castrates to examine the effect of source of starch and fiber on nutrient balance and energy metabolism. Pigs were fed on one of the four experimental diets: Control diet (C) mainly based on cooked rice; and diets P, S and W with the inclusion of either raw potato starch, sugar beet pulp or wheat bran supplementation, respectively. With the exception of an increased (p<0.05) energy loss from methane production with diet S observed, no significant differences (p>0.05) in the ratio of metabolizable energy (ME)/digestible energy, the utilization of ME for fat deposition and for protein deposition, energy loss as hydrogen and urinary energy were found between diets. The efficiency of utilization of ME for maintenance was lower (p<0.05) with diets P and S than with diet C. The inclusion of fiber sources (sugar beet pulp or wheat bran) or potato starch reduced the maintenance energy requirement. The fecal energy excretion was increased (p<0.05) with either sugar beet pulp or wheat bran supplementation, while it was unaffected (p>0.05) by addition of potato starch. In comparison with diets C and P, a lowered ileal or fecal digestibility of energy with diets S and W was observed (p<0.05). Feeding sugar beet pulp caused increased (p<0.05) daily production of methane and carbon dioxide and consequently increased energy losses from methane and carbon dioxide production, while it did not influence the daily hydrogen production (p>0.05). An increased (p<0.05) proportion of NSP excreted in feces was seen by the supplementation of wheat bran. Higher NSP intake caused an increased daily amount of NSP in the ileum, but the ileal NSP proportion as a percentage of NSP intake was unaffected by diets. Feeding potato starch resulted in increased daily amount of starch measured in the ileum and the proportion of ileal starch as a percentage of starch intake, while no significant influence on fecal starch was found. Higher (p<0.05) daily amount of fecal starch and the proportion of fecal starch as a percentage of starch intake were found with fiber sources supplementation compared with diets C and P. By increasing the dietary NSP content the fecal amount of starch increased (p<0.01).

Effect of carbon substrate on the intracellular fluxes in succinic acid producing Escherichia coli.

  • Hong, Soon-Ho;Lee, Dong-Yup;Kim, Tae-Yong;Lee, Sang-Yup;Park, Sun-Won
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2003.10a
    • /
    • pp.251-257
    • /
    • 2003
  • Metabolic engineering has become a new paradigm for the more efficient production of desired bioproducts. Metabolic engineering can be defined as directed modification of cellular metabolism and properties through the introduction, deletion, and modification of metabolic pathways by using recombinant DNA and other molecular biological tools. During the last decade, metabolic flux analysis(MFA) has become an essential tool fur metabolic engineering. By MFA, the intracellular metabolic fluxes can be quantified by the measurement of extracellular metabolite concentrations in combination with the stoichiometry of intracellular reactions and mass balances. The usefulness and functionality of MFA are demonstrated by applying to metabolic pathways in E. coli. First, a large-scale in silico E. coli model is constructed, and then the effects of carbon sources on intracellular flux distributions and succinic acid production were investigated on the basis of the uptake and secretion rates of the relevant metabolites. The results indicated that succinic acid yields increased in order of gluconate, glucose and sorbitol. Acetic acid and lactic acid were produced as major products rather than when gluconate and glucose were used carbon sources. The results indicated that among three carbon sources available, the most reduced substrate is sorbitol which yields efficient succinic acid production.

  • PDF

Incapability of Utilizing Galactose by pgs1 Mutation Occurred on the Galactose Incorporation Step in Saccharomyces cerevisiae

  • Rho, Min-Suk;Su, Xuefeng;Lee, Yoon-Shik;Kim, Woo-Ho;Dowhan, William
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.84-91
    • /
    • 2006
  • A Saccharomyces cerevisiae pgs1 nulI mutant, which is deficient with phosphatidyl glycerol (PG) and cardiolipin (CL) biosynthesis, grows well on most fermentable carbon sources, but fails to grow on non-fermentable carbon sources such as glycerol, ethanol, and lactate. This mutant also cannot grow on galactose medium as the sole carbon source. We found that the incorporation of $[^{14}C]-galactose$, which is the first step of the galactose metabolic pathway (Leloir pathway), into the pgs 1 null mutant cell was extremely repressed. Exogenously expressed PGS1 (YCpPGS1) under indigenous promoter could completely restore the pgs1 growth defect on non-fermentable carbon sources, and dramatically recovered $[^{14}C]-galactose$ incorporation into the pgs1 mutant cell. However, PGS1 expression under the GALl promoter $(YEpP_{GAL1}-PGS1myc)$ could not complement pgs1 mutation, and the GAL2-lacZ fusion gene $(YEpP_{GAL2}-lacZ)$ also did not exhibit its $\beta-galactosidase$ activity in the pgs1 mutant. In wild-type yeast, antimycin $A(1\;{\mu}g/ml)$, which inhibits mitochondrial complex III, severely repressed not only the expression of the GAL2-lacZ fusion gene, but also uptake of $[^{14}C]-galactose$. However, exogenously expressed PGS1 partially relieved these inhibitory effects of antimycin A in both the pgs1 mutant and wild-type yeast, although it could not basically restore the growth defect on galactose by antimycin A. These results suggest that the PGSI gene product has an important role in utilization of galactose by Gal genes, and that intact mitochondrial function with PGS1 should be required for galactose incorporation into the Leloir pathway. The PGS1 gene might provide a clue to resolve the historic issue about the incapability of galactose with deteriorated mitochondrial function.

The Pharmacokinetics of Nimodipine After Oral Administration in Rabbits with Hepatic Failure

  • Choi, Jun-Shik;Choi, In;Burm, Jin-Pil
    • Journal of Pharmaceutical Investigation
    • /
    • v.36 no.1
    • /
    • pp.19-22
    • /
    • 2006
  • The pharmacokinetics of nimodipine, following a single 16 mg/kg oral dose, was investigated in rabbits with hepatic failure induced by 0.5 mL/kg (mild), 1.0 mL/kg (moderate) and 2.0 mL/kg (severe) of carbon tetrachloride $(CCl_{4}$ : olive oil = 20 : 80, v/v). The plasma concentrations of nimodipine were determined by a high performance liquid chromatographic assay. The levels of sGOT and sGPT in rabbits with mild $(86.2{\pm}29.0\;and\;98.5{\pm}33.1\;unit/dL)$, moderate $(168.1{\pm}61.2\;and\;196.2{\pm}66.0\;unit/dL)$ and severe $(292.7{\pm}82.2\;and\;314.2{\pm}99.8\;unit/dL)$ hepatic failure were significantly increased compared to the control $(38.0{\pm}10.1\;and\;32.4{\pm}10.2\;unit/dL)$. The area under the plasma concentration-time curve (AUC) of nimodipine was significantly increased in mild $(131.7{\pm}28.1%)$, moderate $(168.8{\pm}32.8%)$ and severe $(204.6{\pm}58.3%)$ carbon tetrachloride-induced hepatic failure rabbits compared to the control (100%) rabbits. The volume of distribution $(V_{d})$ and the total body clearance $(CL_{t})$ of nimodipine were significantly decreased in all hepatic failure groups. The elimination rate constant $(K_{el})$ of nimodipine was significantly decreased in moderate and severe carbon tetrachloride-induced hepatic failure rabbits. There was a correlation between sGOT (y= 1.01x+241, r=0.993) or sGPT (y=0.92x +243, r=0.997) value and the AUC of nimodipine in the rabbits with hepatic failure. These findings suggest that the hepatic metabolism of nimodipine was inhibited by carbon tetrachloride-induced hepatic failure rabbits, resulting in the decrese in $V_{d}$ and $CL_{t}$ of nimodipine in the rabbits with mild, moderate and severe hepatic failure.

EFFECTS OF NICARBAZIN AND HOT TEMPERATURE ON EVAPORATIVE WATER LOSS, ACID-BASE BALANCE, BODY TEMPERATURE AND CARBON DIOXIDE EXHALATION IN ADULT ROOSTERS

  • Lee, B.D.;Lee, S.K.;Hyun, W.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.7 no.1
    • /
    • pp.97-101
    • /
    • 1994
  • Two experiments were conducted to study the effect of ambient temperature and nicarbazin on SCWL adult roosters. In Experiment 1, the effects of nicarbazin supplementation (125 ppm) on the water metabolism, blood acid-base balance; and rectal temperature of 16 birds in normal ($21^{\circ}C$) and hot ($35-36^{\circ}C$) temperature were investigated. In Experiment 2, the evaporative water loss and $CO_2$ exhalation from 8 birds were measured individually with an open-circuit gravimetric respiration apparatus in normal ($21^{\circ}C$) and hot ($33.5-34^{\circ}C$) temperature. The amount of water intake and evaporative water loss increased in birds under heat stress (HS). Nicarbazin exacerbated these effect in hot temperature. Also, nicarbazin decreased the blood $pCO_2$ and increased pH of HS birds. The rectal temperature of birds increased in hot temperature, and nicarbazin worsened this effect. The evaporative water loss, measured directly with respiration apparatus (Experiment 2), was increased in hot temperature. HS decreased the amount of $CO_2$ exhalation. Nicarbazin did not exert ant effect on either of these measurements, probably due to the limited duration (2 h) of the trial. The decrease in $CO_2$ exhalation by HS birds could be explained by reduced metabolic rate, which helps homeothermy of birds in hot temperature.

Effects of controlled environmental changes on the mineralization of soil organic matter

  • Choi, In-Young;Nguyen, Hang Vo-Minh;Choi, Jung Hyun
    • Environmental Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.347-355
    • /
    • 2017
  • This study investigated how the combined changes in environmental conditions and nitrogen (N) deposition influence the mineralization processes and carbon (C) dynamics of wetland soil. For this objective, we conducted a growth chamber experiment to examine the effects of combined changes in environmental conditions and N deposition on the anaerobic decomposition of organic carbon and the emission of greenhouse gases from wetland soil. A chamber with elevated $CO_2$ and temperature showed almost twice the reduction of total decomposition rate compared to the chamber with ambient atmospheric conditions. In addition, $CO_2$ fluxes decreased during the incubation under the conditions of ambient $CO_2$ and temperature. The decrease in anaerobic microbial metabolism resulted from the presence of vegetation, which influences the litter quality of soils. This can be supported by the increase in C/N ratio over the experimental duration. Principle component analysis results demonstrated the opposite locations of loadings for the cases at the initial time and after three months of incubation, which indicates a reduction in the decomposition rate and an increasing C/N ratio during the incubation. From the distribution between the decomposition rate and gas fluxes, we concluded that anaerobic decomposition rates do not have a significantly positive relationship with the fluxes of greenhouse gas emissions from the soil.