• Title/Summary/Keyword: carbon materials

Search Result 6,208, Processing Time 0.036 seconds

Carbon Material from Natural Sources as an Anode in Lithium Secondary Battery

  • Bhardwaj, Sunil;Sharon, Maheshwar;Ishihara, T.;Jayabhaye, Sandesh;Afre, Rakesh;Soga, T.;Sharon, Madhuri
    • Carbon letters
    • /
    • v.8 no.4
    • /
    • pp.285-291
    • /
    • 2007
  • Carbon materials of various morphologies were synthesized by pyrolysis of Soap-nut seeds (Sapindus mukorossi), Jack Fruit seeds (Artocarpus heterophyllus), Date-seeds (Phoenix dactylifera), Neem seeds (Azadirachta indica), Tea leaves (Ehretia microphylla), Bamboo stem (Bambusa bambus) and Coconut fiber (Cocos nucifera), without using any catalyst. Carbon materials thus formed were characterized by SEM XRD and Raman. Carbon thus synthesized varied in size (in ${\mu}m$) but all showed highly porous morphology. These carbon materials were utilized as the anode in Lithium secondary battery. Amongst the various precursors, carbon fibers obtained from Soap-nut seeds (Sapindus mukorossi) and Bamboo stem (Bambusa bambus), even after $100^{th}$ cycles, showed the highest capacity of 130.29 mAh/g and 92.74 mAh/g respectively. Morphology, surface areas and porosity of carbon materials obtained from these precursors were analyzed to provide interpretation for their capacity to intercalate lithium. From the Raman studies it is concluded that graphitic nature of carbon materials assist in the intercalation of lithium. Size of cavity (or pore size of channels type structure) present in carbon materials were found to facilitate the intercalation of lithium.

Hierarchical porous carbon nanofibers via electrospinning

  • Raza, Aikifa;Wang, Jiaqi;Yang, Shan;Si, Yang;Ding, Bin
    • Carbon letters
    • /
    • v.15 no.1
    • /
    • pp.1-14
    • /
    • 2014
  • Carbon nanofibers (CNFs) with diameters in the submicron and nanometer range exhibit high specific surface area, hierarchically porous structure, flexibility, and super strength which allow them to be used in the electrode materials of energy storage devices, and as hybrid-type filler in carbon fiber reinforced plastics and bone tissue scaffold. Unlike catalytic synthesis and other methods, electrospinning of various polymeric precursors followed by stabilization and carbonization has become a straightforward and convenient way to fabricate continuous CNFs. This paper is a comprehensive and brief review on the latest advances made in the development of electrospun CNFs with major focus on the promising applications accomplished by appropriately regulating the microstructural, mechanical, and electrical properties of as-spun CNFs. Additionally, the article describes the various strategies to make a variety of carbon CNFs for energy conversion and storage, catalysis, sensor, adsorption/separation, and biomedical applications. It is envisioned that electrospun CNFs will be the key materials of green science and technology through close collaborations with carbon fibers and carbon nanotubes.

Effect of Inherent Anatomy of Plant Fibers on the Morphology of Carbon Synthesized from Them and Their Hydrogen Absorption Capacity

  • Sharon, Madhuri;Sharon, Maheshwar
    • Carbon letters
    • /
    • v.13 no.3
    • /
    • pp.161-166
    • /
    • 2012
  • Carbon materials were synthesized by pyrolysis from fibers of Corn-straw (Zea mays), Rice-straw (Oryza sativa), Jute-straw (Corchorus capsularis) Bamboo (Bombax bambusa), Bagass (Saccharum officinarum), Cotton (Bombax malabaricum), and Coconut (Cocos nucifera); these materials were characterized by scanning electron microscope, X-ray diffraction (XRD), and Raman spectra. All carbon materials are micro sized with large pores or channel like morphology. The unique complex spongy, porous and channel like structure of Carbon shows a lot of similarity with the original anatomy of the plant fibers used as precursor. Waxy contents like tyloses and pits present on fiber tracheids that were seen in the inherent anatomy disappear after pyrolysis and only the carbon skeleton remained; XRD analysis shows that carbon shows the development of a (002) plane, with the exception of carbon obtained from bamboo, which shows a very crystalline character. Raman studies of all carbon materials showed the presence of G- and D-bands of almost equal intensities, suggesting the presence of graphitic carbon as well as a disordered graphitic structure. Carbon materials possessing lesser density, larger surface area, more graphitic with less of an $sp^3$ carbon contribution, and having pore sizes around $10{\mu}m$ favor hydrogen adsorption. Carbon materials synthesized from bagass meet these requirements most effectively, followed by cotton fiber, which was more effective than the carbon synthesized from the other plant fibers.

Thermodynamic Interactions Among Carbon, Silicon and Iron in Carbon Saturated Manganese Melts (탄소 포화 Mn 합금 용액내 C, Si 및 Fe 사이의 열역학적 상호작용)

  • Paek, Min-Kyu;Lee, Won-Kyu;Jin, Jinan;Jang, Jung-Mock;Pak, Jong-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.1
    • /
    • pp.45-51
    • /
    • 2012
  • Thermodynamics of carbon in manganese alloy melts is important in manufacturing low carbon ferromanganese and silico-manganese alloys. In order to predict the carbon solubility in liquid $Mn-Si-Fe-C_{sat}$ alloys as a function of melt composition and temperature, thermodynamic interactions among carbon, silicon and iron in carbon saturated liquid manganese should be known. In the present study, the effects of silicon and iron on the carbon solubility in Mn-Si, Mn-Fe and Mn-Si-Fe melts were measured in the temperature range from 1673 to 1773 K. The carbon solubility decreases significantly as silicon and iron contents increase in liquid manganese alloy. The interaction parameters among carbon, silicon and iron in carbon saturated liquid manganese were determined from the carbon solubility data and the Lupis' relation for the interaction coefficient at constant activity.

Mesoporous Carbon as a Metal-Free Catalyst for the Reduction of Nitroaromatics with Hydrazine Hydrate

  • Wang, Hui-Chun;Li, Bao-Lin;Zheng, Yan-Jun;Wang, Wen-Ying
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2961-2965
    • /
    • 2012
  • Mesoporous carbons with tailored pore size were prepared by using sucrose as the carbon source and silicas as the templates. The silica templates were obtained from a hydroxypropyl-${\beta}$-cyclodextrin-silica hybrids using ammonium perchlorate oxidation at different temperatures to remove the organic matter. The structures and surface chemistry properties of these carbon materials were characterized by $N_2$ adsorption, TEM, SEM and FTIR measurements. The catalytic performances of these carbon materials were investigated through the reduction of nitroaromatic using hydrazine hydrate as the reducing agent. Compared with other carbon materials, such as active carbon, and carbon materials from the silica templates obtained by using calcination to remove the organic matter, these carbon materials exhibited much higher catalytic activity, no obvious deactivation was observed after recycling the catalyst four times. Higher surface area and pore volume, and the presence of abundant surface oxygen-containing functional groups, which originate from the special preparation process of carbon material, are likely responsible for the high catalytic property of these mesoporous carbon materials.

Synthesis and characterization of polybenzoxazole/graphene oxide composites via in situ polymerization

  • Lim, Jun;Kim, Min-Cheol;Goh, Munju;Yeo, Hyeounk;Shin, Dong Geun;Ku, Bon-Cheol;You, Nam-Ho
    • Carbon letters
    • /
    • v.14 no.4
    • /
    • pp.251-254
    • /
    • 2013
  • In this study, poly(amic acid) was prepared via a polycondensation reaction of 3,3'-dihydroxybenzidine and pyromellitic dianhydride in an N-methyl-2-pyrrolidone solution; reduced graphene oxide/polybenzoxazole (r-GO/PBO) composite films, which significantly increased the electrical conductivity, were successfully fabricated. GO was prepared from graphite using Brodie's method. The GO was used as nanofillers for the preparation of r-GO/PBO composites through an in situ polymerization. The addition of 50 wt% GO led to a significant increase in the electrical conductivity of the composite films by more than sixteen orders of magnitude compared with that of pure PBO films as a result of the electrical percolation networks in the r-GO during the thermal treatment at various temperatures within the films.

A Study of Partial Carbonisation for the Development of Pitch Based Carbon Fibres

  • Aggarwal, R.K.;Bhatia, G.;Raman, V.;Saha, M.;Mishra, A.
    • Carbon letters
    • /
    • v.5 no.1
    • /
    • pp.23-26
    • /
    • 2004
  • A study of partial carbonisation of green pitch fibres to temperatures in the range of 500-$1000^{\circ}C$ was carried out on three precursors - a neat pitch and two polymer modified pitches, with a view to find out a suitable temperature at which the fibres acquire considerably improved toughness or handleability (compared to that in the green stage) for their subsequent processing into carbon fibres. A partial carbonisation temperature of 500-$600^{\circ}C$ has been identified to result in a remarkable improvement in the toughness/handleability of the fibres in all the three cases. However, from techno-economical considerations, the neat pitch appears to provide the best precursor system for the production of pitch based carbon fibres.

  • PDF

Carbon Materials as Catalysts

  • Lim, Seong-Yop;Jung, Doo-Hwan;Yoon, Seong-Ho;Mochida, Isao
    • Carbon letters
    • /
    • v.9 no.1
    • /
    • pp.47-60
    • /
    • 2008
  • Understanding the exact structure and surface characteristics of carbon materials is very important for design, synthesis, and utilization of the best carbon form with particular functions and high performance for practical applications such as selective adsorption adsorbents, energy storage materials, catalysts or catalyst supports, etc. This review paper focuses on carbon surface properties and the interaction between gaseous or liquid substances and carbon surface. Catalytic functions of carbon materials are reviewed including recent progress in synthesis and applications of nano-carbons.

Heating Properties of Cement Composites using Waste Carbon Materials (폐탄소 소재를 활용한 시멘트복합체 발열성능 평가)

  • Koo, Hyun-Chul;Cho, Hyeong-Kyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.213-214
    • /
    • 2023
  • The burden of housing heating costs has increased as energy prices such as global oil prices (28.1%), LNG (38%) and minerals (100%) have soared due to the Ukraine crisis. Accordingly, an electrically conductive cement composites had developed using waste carbon materials such as waste cathode materials, waste CNTs, and waste carbon fibers, and the heat generation performance was evaluated.

  • PDF

Fabrication of various carbon nanostructures by using different catalysts (촉매에 따른 다양한 탄소나노구조체 합성)

  • Choi, Kang-Ho;Yoo, In-Joon;Lee, Hee-Soo;Lee, Kyu-Hwan;Lim, Dong-Chan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.3
    • /
    • pp.133-140
    • /
    • 2010
  • Carbon fiber has many potential applications in a wide array of fields of solar cell, fuel cell, batteries, and polymer matrix composites due to an exceptional mechanical properties and chemical stability. In this study, the effects of catalysts on the property of carbon nanostructures grown on the carbon fiber were systematically investigated. The surface treatment of carbon fiber and catalysts synthesis for carbon nanostructures growth were carried out by one-pot ELP method and thermal CVD, respectively. The surface morphology and crystal structure of carbon nanostructures were examined using a field emission scanning electron microscope and transmission electron microscope. Depending on the type of catalysts and the molar ratio, various types of carbon nanostructures like carbon nanotube, carbon nanofilament, carbon nanospring and etc. were synthesized on the surface of carbon fibers surface.