• Title/Summary/Keyword: carbon materials

검색결과 6,265건 처리시간 0.037초

Carbon/TiO2 Prepared from Anatase to Pitch and their Photocatalytic Performance

  • Chen, Ming-Liang;Ko, Young-Shin;Oh, Won-Chun
    • Carbon letters
    • /
    • 제8권1호
    • /
    • pp.6-11
    • /
    • 2007
  • Carbon/$TiO_2$ composites were prepared by $CCl_4$ solvent mixing method with different mixing ratios. Since the carbon layers derived from pitch on the $TiO_2$ particles were porous, the Carbon/$TiO_2$ composite series showed a good adsorptivity and photo decomposition activity. The BET surface area for the carbon layer in the sample increases to increasing with pitch contents. The SEM results present to the characterization of porous texture on the Carbon/$TiO_2$ composite and pitch distributions on the surfaces for all the materials used. From XRD data, a weak and broad carbon peak of graphene with pristine anatase peaks were observed in the X-ray diffraction patterns for the Carbon/$TiO_2$. The EDX spectra show the presence of C, O and S with strong Ti peaks. Most of these samples are richer in carbon and major Ti metal than any other elements. Finally, the excellent photocatalytic activity of Carbon/$TiO_2$ with slope relationship between relative concentration (C/$C_0$) of MB and t could be attributed to the homogeneous coated pitch on the external surface by $CCl_4$ solvent method.

Comparative study on carboxylated styrene butadiene rubber composites reinforced by hybrid fillers of rice bran carbon and graphite carbon

  • Fan, Yuan;Li, Qingyuan;Li, Xiangxu;Lee, Dam hee;Cho, Ur Ryong
    • Carbon letters
    • /
    • 제27권
    • /
    • pp.72-80
    • /
    • 2018
  • In the present work, a comparative study of the mechanical behavior of two series of elastomeric composites, based on carboxylated styrene butadiene rubber (X-SBR) and reinforced with rice bran carbon (RBC) and graphite, is reported. Hybrid composites of X-SBR filled with RBC-graphite were also investigated in terms of the cure characteristics, hardness, tensile properties, abrasion resistance, and swelling. It was observed that the cure times decreased with the incorporation of a carbon filler whereas the torque difference, tensile strength, tensile modulus, hardness, and swelling resistance increased compared to the neat X-SBR revealing a favorable characteristic of crosslinking. Dynamic rheological analysis showed that the G' values of the composites, upon the addition of RBC-graphite, were changed to some extent. This demonstrates that the presence of a strongly developed network of fillers will ensure a reinforcing characteristic in a polymer matrix.

상대재 내식성이 철강재료의 미끄럼마모 특성에 미치는 영향 (Effects of Corrosion Resistance Characteristics of Opponent Materials in relative Motion on Sliding Wear Behavior of Mild Carbon Steel)

  • 이한영
    • Tribology and Lubricants
    • /
    • 제35권2호
    • /
    • pp.139-147
    • /
    • 2019
  • This study investigates the effects of corrosion resistance characteristics of opponent materials in relative motion on the sliding wear behavior of mild carbon steel. Pin specimens made of mild carbon steel are tested at several sliding speeds against mating discs made of two types of alloyed steels, such as type D2 tool steel (STD11) and type 420 stainless steel (STS420J2), with different corrosion resistance characteristics in a pin-on-disc type sliding wear test machine. The results clearly show that the sliding wear behavior of mild carbon steel is influenced by the corrosion resistance characteristics of the mating disc materials at low sliding speeds. However, the sliding wear behavior at high sliding speeds is irrelevant to the characteristics because of the rising temperature. During the steady state wear period, the sliding wear rate of mild carbon steel against the type 420 stainless steel at a sliding speed of 0.5 m/s increases considerably unlike against the type D2 tool steel. This may be because the better corrosion resistance characteristics achieve a worse tribochemical reactivity. However, during the running-in wear period at low sliding speeds, the wear behavior of mild carbon steel is influenced by the microstructure after heat treatment of the mating disc materials rather than by their corrosion resistance characteristics.

Self-Organized Synthesis and Mechanism of SnO2@Carbon Tube-Core Nanowire

  • Luo, Minting;Ma, Yong-Jun;Pei, Chonghua;Xing, Yujing;Wen, Lixia;Zhang, Li
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권8호
    • /
    • pp.2535-2538
    • /
    • 2012
  • $SnO_2@carbon$ tube-core nanowire was synthesized via a facile self-organized method, which was in situ by one step via Chemical Vapor Deposition. The resulting composite was characterized by scanning electron microscopy, X-ray diffraction and transmission electron microscope. The diameter of the single nanowire is between 5 nm and 60 nm, while the length would be several tens to hundreds of micrometers. Then X-ray diffraction pattern shows that the composition is amorphous carbon and tin dioxide. Transmission electron microscope images indicate that the nanowire consists of two parts, the outer carbon tube and the inner tin dioxide core. Meanwhile, the possible growth mechanism of $SnO_2@carbon$ tube-core nanowire is also discussed.

용융 Si 침윤법에 의해 제조된 반응소결 탄소 섬유강화 탄화규소 복합체 제조; I. 탄소 섬유 코팅 방법에 따른 영향 (Fabrication of Carbon Fiber Reinforced Reaction Bonded SiC Composite Fabricated by a Molten Si Infiltration Method; I. The Effect of Carbon Fiber Coating Process)

  • 윤성호;;조경선;정훈;김영도;박상환
    • 한국세라믹학회지
    • /
    • 제45권9호
    • /
    • pp.531-536
    • /
    • 2008
  • Reaction bonded silicon carbide (RBSC) composite for heat-exchanger was fabricated by molten Si infiltration method. For enforcing fracture toughness to reaction bonded silicon carbide composite, the surface of carbon fiber has coating layer by SiC or pyro-carbon. For SiC layer coating, CVD method was used. And for carbon layer coating, the phenol resin was used. In the case of carbon layer coating, fracture toughness and fracture strength were enhancing to 4.4 $MPa{\cdot}m^{1/2}$ and 279 MPa.

스크린 프린팅법에 의한 탄소나노튜브 전계방출소자의 제조기술 (Fabrication Techniques for Carbon Nanotube Field Emitters by Screen Printing)

  • 이만;손지하;주학림;정효수;고남제;이동구
    • 한국재료학회지
    • /
    • 제12권6호
    • /
    • pp.499-507
    • /
    • 2002
  • The carbon nanotube emitters for field emission displays were fabricated by using screen printing techniques. The pastes for screen printing are composed of organic binders, carbon nanotubes (multiwalled or singlewalled), and some additive materials. The pastes were printed on Cr-coated/Ag-printed soda-lime glass substrates. From the I-V characteristics, the turn-on field of SWNT was lower than that of MWNT. The decrease in the mesh size of screen masks (i.e. increase in the opening size of the screen mesh) resulted in decreasing the turn-on field and increasing the electron emission current. When the carbon nanotubes were mixed with silver pastes, silver powders appeared to contribute to the vertically aligning of carbon nanotubes on a glass.

고온 이산화탄소 분위기에서 316 L 스테인리스강의 부식 거동 (High-Temperature Corrosion Behavior of 316 L Stainless Steel in Carbon Dioxide Environment)

  • 채호병;서석호;정용찬;이수열
    • 한국재료학회지
    • /
    • 제27권10호
    • /
    • pp.552-556
    • /
    • 2017
  • Evaluation of the durability and stability of materials used in power plants is of great importance because parts or components for turbines, heat exchangers and compressors are often exposed to extreme environments such as high temperature and pressure. In this work, high-temperature corrosion behavior of 316 L stainless steel in a carbon dioxide environment was studied to examine the applicability of a material for a supercritical carbon dioxide Brayton cycle as the next generation power plant system. The specimens were exposed in a high-purity carbon dioxide environment at temperatures ranging from 500 to $800^{\circ}C$ during 1000 hours. The features of the corroded products were examined by optical microscope and scanning electron microscope, and the chemical compound was determined by x-ray photoelectron spectroscopy. The results show that while the 316 L stainless steel had good corrosion resistance in the range of $500-700^{\circ}C$ in the carbon dioxide environment, the corrosion resistance at $800^{\circ}C$ was very poor due to chipping the corroded products off, which resulted in a considerable loss in weight.

PLAD법에 의한 탄소 플라즈마의 모델링 (The Modelling of Carbon Plume by Pulsed-laser ablation Method)

  • 소순열;정해덕;이진;박계춘;김창선;문채주
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 영호남 합동 학술대회 및 춘계학술대회 논문집 센서 박막 기술교육
    • /
    • pp.41-45
    • /
    • 2006
  • The study on laser-ablation plasmas has been strongly interested in fundamental aspects of laser-solid interaction and consequent plasma generation. In particular, this plasma has been widely used for the deposition of thin solid films and applied to the semiconductors and insulators. In this paper, we developed and discussed the generation of carbon ablation plasmas emitted by laser radiation on a solid target, graphite. The progress of carbon plasmas by laser-ablation was simulated using Monte-Carlo particle model under the pressures of vacuum, 1 Pa, 10 Pa and 66 Pa. At the results, carbon particles with low energy were deposited on the substrate as the pressure becomes higher. However, there was no difference of deposition distributions of carbon particles on the substrate regardless of the pressure.

  • PDF