• Title/Summary/Keyword: carbon dioxide utilization

Search Result 111, Processing Time 0.023 seconds

Valorizing Cattle Manure to Syngas via Catalytic Pyrolysis with CO2 (이산화탄소-촉매 열분해 활용 우분 유래 합성가스 증대 연구)

  • Lee, Dong-Jun;Jung, Jong-Min;Kim, Jung Kon;Lee, Dong-Hyun;Kim, Hyunjong;Park, Young-Kwon;Kwon, Eilhann E.
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.141-150
    • /
    • 2022
  • To abate the environmental burden derived from the massive generation of cattle manure (CM), pyrolysis of CM was suggested as one of the methods for manure treatment. In respect of carbon utilization, pyrolysis has an advantage in that it can produce usable carbon-based chemicals. This study was conducted to investigate a syngas production from pyrolysis of CM in CO2 condition. In addition, mechanistic functionality of CO2 in CM pyrolysis was investigated. It was found that the formation of CO was enhanced at ≥ 600 ℃ in CO2 environment, which was attribute to the homogeneous reactions between CO2 and volatile matters (VMs). To expedite reaction kinetics for syngas production during CM pyrolysis, Catalytic pyrolysis was carried out using Co/SiO2 as a catalyst. The synergistic effects of CO2 and catalyst accelerate the formation of H2 and CO at entire temperature range. Thus, this result offers that CO2 could be a viable option for syngas production with the mitigation of greenhouse gas.

Study on Potential Feasibility of Biomethane as a Transport Fuel in Korea (수송용 대체연료로서 바이오메탄의 잠재적 타당성 연구)

  • Kim, Jae-Kon;Lee, Don-Min;Park, Chun-Kyu;Yim, Eui-Soon;Jung, Choong-Sub;Kim, Ki-Dong;Oh, Young-Sam
    • New & Renewable Energy
    • /
    • v.7 no.3
    • /
    • pp.17-28
    • /
    • 2011
  • Biogas production and utilization are an emerging alternative energy technology. Biogas is produced from the biological breakdown of organic matter through anaerobic digestion. Biogas can be utilized for various energy sectors such as space heating, electricity generation and vehicle fuel. Especially, to be utilized as vehicle fuel, raw biogas needs to be upgraded that is mainly the removal of carbon dioxide to increase the methane content up to more than 95 ~ 97 vol% in some cases, similar to the composition of fossil-based natural gas. Usage of Biogas as a fuel of vehicles have an effect of reducing $CO_2$ emission compared to fossil fuels. Biomethane which is produced by upgrading of biogas is regarded as a good alternative energy and usage of clean energy is encouraged to deal with air pollution and waste management as well as production of clean energy. Recently, biogas projects for vehicle fuel are newly being launched and Korea government have also announced a plan for investment to develop biogas as a transport fuel. In this study, it is aimed to examine the potential feasibility of biomethane as a transport fuel. As a results, the status of biomethane, quality standard, quality characteristics, and upgrading technology of biogas were investigated to evaluate of biogas as a vehicle fuel of transportation.

The Prospect of Methanol and Its Meaning (메탄올의 전망(展望)과 그 의미(意味))

  • Uhm, Sung-Jin
    • Applied Chemistry for Engineering
    • /
    • v.3 no.1
    • /
    • pp.1-6
    • /
    • 1992
  • In this energy and environment conscious age, methanol has come to attention increasingly since the well established process is commercially available to produce methanol from abundant low grade carbonaceous resources ; methane, carbon dioxide, coal and biomass etc. Methanol is a Clean energy source which is a readily storable and transportable liquid. It is elaborated to correlate power generation, city gas and chemical feed stocks including transportation fuel, enhancing the national efficiency of resource utilization as well as reducing the environmental problems for the future via C1 technology. It is emphasized that $CO_2$ could be used to produce methanol as a mean of hydrogen storage as in the nature, which will alleviate the environmental problem such as green house effect.

  • PDF

A Comparative Study on the Formation of Methane Hydrate Using Natural Zeolite and Synthetic Zeolite 5A (천연 제올라이트와 합성 제올라이트 5A를 이용한 메탄 하이드레이트의 생성에 대한 비교 연구)

  • Park, Sung-Seek;Park, Yun-Beom;Kim, Nam-Jin
    • New & Renewable Energy
    • /
    • v.8 no.2
    • /
    • pp.24-32
    • /
    • 2012
  • Natural gas hydrates have a high potential as the 21st century new energy resource, because it have a large amount of deposits in many deep-water and permafrost regions of the world widely. Natural gas hydrate is formed by physical binding between water molecule and gas mainly composed of methane, which is captured in the cavities of water molecules under the specific temperature and pressure. $1m^3$ methane hydrate can be decomposed to the methane gas of $172m^3$ and water of $0.8m^3$ at standard condition. Therefore, there are a lot of practical applications such as separation processes, natural gas storage transportation and carbon dioxide sequestration. For the industrial utilization of methane hydrate, it is very important to rapidly manufacture hydrate. However, when methane hydrate is artificially formed, its reaction time may be too long and the gas consumption in water becomes relatively low, because the reaction rate between water and gas is low. So in this study, hydrate formation was experimented by adding natural zeolite and Synthetic zeolite 5A in distilled water, respectively. The results show that when the Synthetic zeolite 5A of 0.01 wt% was, the amount of gas consumed during the formation of methane hydrate was higher than that in the natural zeolite. Also, the natural zeolite and Synthetic zeolite 5A decreased the hydrate formation time to a greater extent than the distilled water at the same subcooling temperature.

Application of Precast Concrete Products of Non-Sintered Cement Mortar based on Industrial by-Products (산업부산물을 이용한 비소성 시멘트 모르타르의 프리캐스트콘크리트 제품 적용성 평가)

  • Na, Hyeong-Won;Moon, Kyoung-Ju;Hyung, Won-Gil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.1
    • /
    • pp.19-26
    • /
    • 2020
  • This study aimed to develop non-sintered cement that could replace portland cement which emits large amount of carbon dioxide during firing process. For this purpose, ground granulated blast furnace slag, type c fly ash and slaked lime were used. In addition, through the experimental results, the characteristics of the non-sintered cement binders according to the mixing ratios will be identified, and the utilization plans for the precast concrete products will be presented. In this experiment, non-sintered cement binders using industrial by-products were prepared to compare the flexural strength and compressive strength of each of the 3, 7 and 28 days. As a result, the results satisfy the KS of the target product proposed in this study. Therefore, this study presents the possibility of using precast concrete products by developing non-sintered cement binders using industrial by-products.

Study on Utilization and Prospect of Lignocellulosic Bioethanol in ASEAN Countries (주요 ASEAN 국가의 목질계 바이오에탄올의 활용 및 전망에 관한 연구)

  • Heo, Su Jung;Choi, Joon Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.588-598
    • /
    • 2017
  • Currently, bioethanol, a fuel additive for transportation, is produced mainly by using biomass (first generation) such as corn and sugar canes. First generation biomass can cause various problems in terms of increase in agricultural prices and ethical reasons. To address these problems, a nonedible lignocellulosic biomass can be utilized. Agricultural byproducts such as straw, bagasse, and forest byproducts from the wood processing industry. Therefore, production of wood based bioethanol can be an effective utilization route of second generation biomass, and its raw materials are more abundant than first generation resources. Furthermore, it is possible to secure cheap raw materials. One of the biggest advantages of using biofuels is that it contributes to the reduction of greenhouse gases by minimizing the environmental impact, unlike fossil fuels. In this study, we investigated the greenhouse gas reduction effects that can be achieved through the use of Lignocellulosic bioethanol and government policies on renewable energy currently being implemented in ASEAN countries (Indonesia, Malaysia, Thailand and the Philippines). In these four countries, policies and incentives related to biofuels have been developed. It is expected that the reduction ratio of carbon dioxide emission and the mixed biofuel will be gradually increased in the future.

Carbonation Mechanism of Hydrated Cement Paste by Supercritical Carbon Dioxide (초임계 이산화탄소에 의한 시멘트 페이스트의 중성화 반응 메커니즘)

  • Park, Jeong-Won;Kim, Ji-Hyun;Lee, Min-Hee;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.5
    • /
    • pp.403-412
    • /
    • 2018
  • Recently, needs for utilization of recycled aggregate have been increasing. However, its utilization has been limited due to its high alkalinity, which mostly came from the unremoved cement paste particles that were attached at the surface of recycled aggregate. Various efforts has been made to reduce its alkalinity by using $CO_2$, but currently available methods that uses $CO_2$ generate the problem with pH recovery. Considering the fact that supercritical $CO_2$ ($scCO_2$) can provide more rapid carbonation of cement paste than by normal $CO_2$, $scCO_2$ was utilized in this work. The reaction between $scCO_2$ and hydrated cement paste has been systematically evaluated. According to the results, it was found that powder type showed higher carbonation compared to that of cube specimens. It seems the carbonation by $scCO_2$ has occurred only at the surface of the specimen, and therefore still showed some amount of $Ca(OH)_2$ calcium aluminates after reaction with $scCO_2$. With powder type specimen, all $Ca(OH)_2$ was converted into $CaCO_3$. Moreover, additional calcium that came from both calcium aluminate hydrates and calcium silicate hydrates reacted with $scCO_2$ to form $CaCO_3$. After carbonation with $scCO_2$, the powder type specimen did not show pH recovery, but cube specimens did show due to the presence of portlandite.

Quality Control of Dissolved Nutrient Data in the Jurisdictional Ocean Information Sharing System (JOISS) (관할해역 해양정보 공동활용 시스템(JOISS) 용존영양염 자료의 품질관리)

  • RHO, TAEKEUN;CHOI, SANG-HWA;LEE, JI YOON;KWON, SOYEON;KANG, DONG-JIN;SONG, TAE YOON;SON, PURENA
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.27 no.4
    • /
    • pp.173-193
    • /
    • 2022
  • Dissolved nutrients in seawater are a key variable for understanding the role of the ocean in controlling atmospheric carbon dioxide, which is a major cause of global warming. In order to continuously monitor changes in the marine environment in the waters around the Korean Peninsula, dissolved nutrient data are being measured through regular observations by national institutions and various research projects. To increase the utilization of these data, the Jurisdictional Ocean Information Sharing System (JOISS), which integrates data from each institution, was established. In this study, for the dissolved nutrient data of JOISS, primary quality control was performed using the regional dissolved nutrient concentration range in the waters around the Korean Peninsula, and the correlation between the dissolved nutrient and other oceanographic characteristics or the correlation within dissolved nutrient components. Providing the quality control flags of regional range and primary quality control may increase the reliability of JOISS dissolved nutrient data and promote the utilization of dissolved nutrient data in JOISS. In addition, we proposed a secondary quality control method essential for improving the international comparability of JOISS dissolved nutrients.

Combustion Properties of Major Wood Species Planted in Indonesia (인도네시아 주요 조림수종의 연소특성)

  • Park, Se-Hwi;Jang, Jae-Hyuk;Hidayat, Wahyu;Qi, Yue;Febrianto, Fauzi;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.768-776
    • /
    • 2015
  • This study was performed to understand combustion properties four major Indonesian wood species such as Albizia, Gmelina, Mangium and Mindi were investigated by cone-calorimeter for better utilization of theses wood species. Heat release rate (HRR), total heat release (TSR), specific mass loss rate (SMLR), effective heat of combustion (EHC), time to ignition (TTI), flame time (FT), specific extinction area (SEA), smoke production rate (SPR) and CO compound production rate were measured. HRR, THR and FT were proportional to the density of woods. Albizia showed the highest HRR, while Mindi had the lowest HRR. For SPR, Albizia showed the highest value due to its higher SEA. On the other hand, Mindi had the lowest SPR due to a lower SEA value. The highest smoke emission was for Albizia at the beginning of combustion. After 300 seconds, smoke emission of Gmleina and Mangium was increased greatly. Mangium and Mindi showed the highest total carbon dioxide emission. Expecially, Gmelina released the highest carbon monoxide during the combustion period and presented three times higher $CO/CO_2$ ratio than those of other species due to incomplete combustion.

Studios on the Utilization of Persimmons -(Part 3) Investigation of the Optimal Conditions in the Removal of Astrigency and Experiment for the Practical Utilization- (감의 이용(利用)에 관(關)한 연구(硏究) -제3보(第三報) 품종별(品種別) 수확시기별(收穫時期別) 탈삽적정조건(脫澁適正條件) 조사(調査) 및 실용화시험(實用化試驗)-)

  • Sohn, Tae-Hwa;Choi, Jong-Uck;Ha, Young-Scon
    • Applied Biological Chemistry
    • /
    • v.19 no.2
    • /
    • pp.104-111
    • /
    • 1976
  • The experiment was tested with fruit of 5 astringent cultivars (Chungdo-Bansi, Sagoksi, Euisung-Bolbansi and Gyungsan-bansi) and was carried out to investigate effects of harvest time of fruit and fruit sizes on the removal of astringency and the practical utilization with Chungdo-Bansi was conducted. 1. Soluble tannin content was decreased in all cultivars as fruit was ripening and soluble tannin content at last harvest time was reduced about one half, as contrasted it's content at first harvest time and it showed that the times required of the removal of astringency was gradually shortened. 2. In soluble tannin contents was small fruit size was significantly higher than that of large fruit size. The times for the removal of astringency was required longer small fruit size than large fruit size. 3. In the changes of hardness according to fruit sizes, hardness of large fruit size was decreased rapider than that of small fruit size. This tendency became similar during and after the removal of astringency. 4. According to fruit sizes, sugar content of large fruit size was more amount than that of small fruit size During and after the removal of astringency, reduction of sugar content showed more rapidly large fruit size than small fruit size. 5. Results of the practical utilization in Chungdo-Bansi showed the promising market-ability and persimmons treated by carbon dioxide was increased more income than that treated by $CaC_2$.

  • PDF