• Title/Summary/Keyword: carbon dioxide formation

검색결과 182건 처리시간 0.025초

활성화 magnetite를 이용한 이산화탄소 분해와 메탄화에 관한 연구 (The Decomposition of Carbon-dioxide and Methanation with Activated Magnetite)

  • 임병오;김승호;박영구
    • 한국대기환경학회지
    • /
    • 제15권2호
    • /
    • pp.183-190
    • /
    • 1999
  • Magnetite was synthesized with $FeSO_4$, and NaOH for the decomposition of carbon dioxide and for the study of the methane formation. The chemical equivalent ratio was changed from 0.5 to 1.50 for the magnetite synthesis. The chemical equivalent ratio was fixed in 1.00, and Nickel chloride and Rhodium chloride equally added and synthesized with the ratio was of 0.10~10.00 mole%. The crystal strucure of the synthesized magnetite was measured XRD. Putting synthesized magnetite in the reactor and using hydrogen gas oxygen-deficient magnetite was made. Injecting carbon dioxide in the reactor, the decomposition reaction was experimented. The formation of methane was confirmed injecting hydrogen gas in the reactor after carbon dioxide was decomposed.

  • PDF

재료조성이 김치의 저장 중 가스발생과 용기압력에 미치는 영향 (Effect of Kimchi Materials on the Gas Formation and Vessel Pressure during Storage)

  • 김덕희;윤광섭;김순동
    • 한국식품저장유통학회지
    • /
    • 제9권2호
    • /
    • pp.144-147
    • /
    • 2002
  • 재료조성이 김치의 저장 중 탄산가스 발생과 용기 압력에 미치는 영향을 조사하기 위하여 재료조성을 달리한 김치를 1$0^{\circ}C$ 에서 저장하면서 pH, 산도, 탄산가스 발생량 및 용기압력의 변화를 측정하였다. 그 결과 마늘을 뺀 김치는 pH감소와 산도의 증가가 완만하였으나 생강, 고춧가루, 젓갈을 뺀 김치는 크게 촉진되었다. 탄산가스 발생량은 대조구와 생강, 고춧가루 및 젓갈을 뺀 김치에서는 저장 3일째부터 높아지기 시작하여 저장 6일째에 최대 값을 나타내었으며 저장 9일째까지 발생이 지속되었다. 김치 담금 재료 중 탄산가스 발생 을 주도하는 재료는 마늘로서 이를 뺀 김치에서는 탄산가스 발생량이 낮았다. 용기압력은 대조구와 생강을 뺀 김치에서 높았으며, 고춧가루, 마늘 및 젓갈을 뺀 김치에서는 비교적 낮았다 또 저장후기에는 전반적으로 감압 상태로 전환되었으며 탄산가스 발생량이 높을수록 감압도가 높았다.

페로브스카이트 ($La_{0.9}$$Sr_{0.1}$$CuO_3$) 전극에서 이산화탄소의 전해환원에 의한 알콜류 생성 (Carbon Dioxide Reduction to Alcoholson Perovskite-Type $La_{0.9}$$Sr_{0.1}$$CuO_3$ Electrodes)

  • 김태근;임준혁
    • 한국환경과학회지
    • /
    • 제5권5호
    • /
    • pp.677-682
    • /
    • 1996
  • 페로브스카이트 ($La_{0.9}$$Sr_{0.1}$$CuO_3$) 전극을 이용하여 이산화탄소를 메탄올, 에탄올등의 알콜류와 아세트 알데히드로 전해환원하였다. 전해환원 실험은 전류밀도 100mA/c$m^2$ 그리고 환원 전위 -2 to -2.5 V vs. Ag/AgCl에서 수행하였다. 실험결과 메탄올은 11.6%, 에탄올은 15.3% 그리고 아세트알데히드는 6.2 %의 최고효율을 나타내었다. 따라서 페로브스카이트 전극은 알콜생성 면에서 기타 다른 금속전극에 비하여 매우 우수한 효과를 보여주었다.

  • PDF

제트확산화염에서 이산화탄소의 첨가가 매연생성에 미치는 영향 (The Effects of Carbon Dioxide as Additives on Soot Formatio in Jet Diffusion Flames)

  • 지정훈;이의주
    • 한국화재소방학회논문지
    • /
    • 제24권6호
    • /
    • pp.170-175
    • /
    • 2010
  • 동축류버너를 이용한 제트확산화염에서 이산화탄소의 첨가가 매연 생성에 미치는 영향을 조사하였다. R-타입 열전대를 이용하여 화염대 및 황염과 청염의 경계온도를 측정하였다. 광감쇄법을 이용하여 화염이 존재하는 국소부분에서의 상대적인 매연 농도(1-I/$I_0$)를 측정하였다. 광원으로는 파장이 632.8nm인 He-Ne 레이저가 사용되었고 디텍터를 이용하여 매연입자에 의해 산란과 흡수를 겪은 후의 감쇄된 신호를 직접 측정하였다. 또한, 매연 생성에 있어서의 열적 효과를 알아보기 위해 산화제의 유속을 변화시켜 유속에 의한 영항을 알아보았다. 실험 결과로써, 황염과 청염 각각의 온도는 이산화탄소의 첨가에 따라 점차 낮아졌지만 황염과 청염의 경계온도는 거의 일정하였다. 산화제 측에 이산화탄소를 첨가함에 따라 상대적인 매연 농도는 낮아졌고 이는 산화제의 유속을 증가시켰을 때의 효과와 유사했다. 이것은 화염온도의 저하와 매연입자의 체류시간 감소에 기인하는 것으로 생각된다. 또한 이산화탄소의 첨가가 화염의 불안정성을 야기하여 순수 에틸렌/공기 화염에 비해 화염의 길이가 다소 증가하는 것으로 나타났다.

메탄-공기 예혼합 화염에서 염화수소의 역할 (The Function of Hydrogen Chloride on Methane-Air Premixed Flame)

  • 신성수;이기용
    • 대한기계학회논문집B
    • /
    • 제29권9호
    • /
    • pp.979-987
    • /
    • 2005
  • Numerical simulations were performed at atmospheric pressure in order to understand the effect of additives on flame speed, flame temperature, radical concentrations, $NO_x$ formation, and heat flux in freely propagating $CH_4-Air$ flames. The additives were both carbon dioxide and hydrogen chloride which had a combination of physical and chemical behavior on hydrocarbon flame. In the flame established with the same mole of methane and additive, hydrogen chloride significantly contributed toward the reduction of flame speed, flame temperature, $NO_x$ formation and heat flux by the chemical effect, whereas carbon dioxide mainly did so by the physical effect. The impact of hydrogen chloride on the decrease of the radical concentration was about $1.4\~3.0$ times as large as that of carbon dioxide. Hydrogen chloride had higher effect on the reduction of $EI_{NO}$ than carbon dioxide because of the chemical effect of hydrogen chloride. The reaction, $OH+HCl{\rightarrow}Cl+H_2O$, played an important role in the heat flux from flames added by hydrogen chloride instead of the reaction, $OH+H_2{\rightarrow}H+H_2O$ which was an important reaction in hydrocarbon flames.

공기중의 벤젠제거에 대한 산화티타늄 광촉매 반응특성 (Photocatalytic Reactivity of Titanium Dioxide in the Removal of Benzene from Air)

  • 박달근
    • 한국대기환경학회지
    • /
    • 제16권4호
    • /
    • pp.389-398
    • /
    • 2000
  • Photocatalytic removal of benzene from air was examined using titanium dioxide photocatalyst films prepared on soda lime glass(50$\times$50$\times$2 mm) by spin coating and chemical vapor deposition. For the measurement of photocatalytic reactivity titanium dioxide coated glass was placed into a batch reactor and concentration of benzene in the reactor was set to abuot 100 ppm, and then illuminated with UV. It was found that catalytic reactivity of titanium dioxide films increased with the increase of titanium dioxide film thickness and then level off beyond a certain film thickness. UV absorption by the films showed the similar trend. The formation of stoichiometric amount of carbon dioxide was confirmed by measurement of carbon dioxide concentration in the reactor. In general spin coated films revealed better photocatalytic reactivity than chemically deposited one within the experimental ranges covered in this study. Morphology and crystal structure of prepared films were investigated by XRD and SEM and they showed significant difference between spin coated films and CVD films. Highest quantum efficiency of prepared titanium dioxide photocatalyst was close to 50%.

  • PDF

이산화탄소(CO2) 레이저로 치료하면 좋은 구강점막질환 (Carbon dioxide LASER-aided management of oral mucosal diseases)

  • 변진석
    • 대한치과의사협회지
    • /
    • 제56권7호
    • /
    • pp.391-397
    • /
    • 2018
  • Mess removal, electrocoagulation, cryosurgery are conventional methods in the treatment of various oral mucosal diseases. However, there are several problems or complication during or after surgery using conventional tools. Recently, LASER gradually become useful tool in the surgery of oral mucosal diseases. Of the LASER, carbon dioxide-mediated LASER is widely used one. Carbon dioxide LASER has many advantages such as good bleeding control, decreased damage to adjacent tissue, decreased pain and swelling, reduced scar formation, even bacteriocidal effects. In this reports, the author describe pros and cons of LASER, especially focused on carbon dioxide, and shed light on the field of LASER application in treatment of various oral mucosal diseases.

  • PDF

이산화탄소 포집 및 저장에 대한 대중의 인식과 수용도 (Public Awareness and Acceptance of Carbon Dioxide Capture and Storage)

  • 이상일;성주식;황진환
    • 환경영향평가
    • /
    • 제21권3호
    • /
    • pp.469-481
    • /
    • 2012
  • CCS(Carbon Dioxide Capture and Storage) is considered as the most effective counterplan in the mitigation of climate change. Even though the risk of leakage of $CO_2$ stored in the geologic formation is very low, the public is expected to disagree with the initiation of a CCS project without proper management plans ensuring the safety. In this study, recognition of laypeople were surveyed about CCS, climate change, characteristics of carbon dioxide, storage concepts, ground pressure, the impact of carbon dioxide, and carbon dioxide for leakage. Thereafter the factors that could affect to recognition of CCS were analyzed by regression analysis. A survey was carried out to find out the public understanding and awareness about climate change and CCS. It is the purpose of this study to propose appropriate risk management strategies based on the findings from the survey.

알칼리 활성화된 고로슬래그 페이스트의 물리화학적 특성 및 이산화탄소 흡수능 평가 (Physicochemical Characteristics and Carbon Dioxide Absorption Capacities of Alkali-activated Blast-furnace Slag Paste)

  • 안해영;박철우;박희문;송지현
    • 한국도로학회논문집
    • /
    • 제17권2호
    • /
    • pp.99-105
    • /
    • 2015
  • PURPOSES: In this study, alkali-activated blast-furnace slag (AABFS) was investigated to determine its capacity to absorb carbon dioxide and to demonstrate the feasibility of its use as an alternative to ordinary Portland cement (OPC). In addition, this study was performed to evaluate the influence of the alkali-activator concentration on the absorption capacity and physicochemical characteristics. METHODS: To determine the characteristics of the AABFS as a function of the activator concentration, blast-furnace slag was activated by using calcium hydroxide at mass ratios ranging from 6 to 24%. The AABFS pastes were used to evaluate the carbon dioxide absorption capacity and rate, while the OPC paste was tested under the same conditions for comparison. The changes in the surface morphology and chemical composition before and after the carbon dioxide absorption were analyzed by using SEM and XRF. RESULTS: At an activator concentration of 24%, the AABFS absorbed approximately 42g of carbon dioxide per mass of paste. Meanwhile, the amount of carbon dioxide absorbed onto the OPC was minimal at the same activator concentration, indicating that the AABFS actively absorbed carbon dioxide as a result of the carbonation reaction on its surface. However, the carbon dioxide absorption capacity and rate decreased as the activator concentration increased, because a high concentration of the activator promoted a hydration reaction and formed a dense internal structure, which was confirmed by SEM analysis. The results of the XRF analyses showed that the CaO ratio increased after the carbon dioxide absorption. CONCLUSIONS : The experimental results confirmed that the AABFS was capable of absorbing large amounts of carbon dioxide, suggesting that it can be used as a dry absorbent for carbon capture and sequestration and as a feasible alternative to OPC. In the formation of AABFS, the activator concentration affected the hydration reaction and changed the surface and internal structure, resulting in changes to the carbon dioxide absorption capacity and rate. Accordingly, the activator ratio should be carefully selected to enhance not only the carbon capture capacity but also the physicochemical characteristics of the geopolymer.

Formation and Dissociation Processes of Gas Hydrate Composed of Methane and Carbon Dioxide below Freezing

  • Hachikubo, Akihiro;Yamada, Koutarou;Miura, Taku;Hyakutake, Kinji;Abe, Kiyoshi;Shoji, Hitoshi
    • Ocean and Polar Research
    • /
    • 제26권3호
    • /
    • pp.515-521
    • /
    • 2004
  • The processes of formation and dissociation of gas hydrates were investigated by monitoring pressure and temperature variations in a pressure cell in order to understand the kinetic behavior of gas hydrate and the controlling factors fur the phase transition of gas hydrate below freezing. Gas hydrates were made kom guest gases ($CH_4,\;CO_2$, and their mixed-gas) and fine ice powder. We found that formation and dissociation speeds of gas hydrates were not controlled by temperature and pressure conditions alone. The results of this study suggested that pressure levels at the formation of mixed-gas hydrate determine the transient equilibrium pressure itself.