• Title/Summary/Keyword: carbon capture system

Search Result 95, Processing Time 0.035 seconds

Analysis of the Influence of CO2 Capture on the Performance of IGCC Plants (가스화 복합화력발전 플랜트에서 CO2제거가 성능에 미치는 영향 해석)

  • Cha, Kyu-Sang;Kim, Young-Sik;Lee, Jong-Jun;Kim, Tong-Seop;Sohn, Jeong-L.;Joo, Yong-Jin
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.1
    • /
    • pp.9-16
    • /
    • 2010
  • In the power generation industry, various efforts are needed to cope with tightening regulation on carbon dioxide emission. Integrated gasification combined cycle (IGCC) is a relatively environmentally friendly power generation method using coal. Moreover, pre-combustion $CO_2$ capture is possible in the IGCC system. Therefore, much effort is being made to develop advanced IGCC systems. However, removal of $CO_2$ prior to the gas turbine may affect the system performance and operation because the fuel flow, which is supplied to the gas turbine, is reduced in comparison with normal IGCC plants. This study predicts, through a parametric analysis, system performances of both an IGCC plant using normal syngas and a plant with $CO_2$ capture. Performance characteristics are compared and influence of $CO_2$ capture is discussed. By removing $CO_2$ from the syngas, the heating value of the fuel increases, and thus the required fuel flow to the gas turbine is reduced. The resulting reduction in turbine flow lowers the compressor pressure ratio, which alleviates the compressor surge problem. The performance of the bottoming cycle is not influenced much.

Variation of the CO2 Capture Reaction by Ammonia Solution with Temperature (온도에 따른 암모니아 용액에 의한 CO2 포집 반응의 변화 양상)

  • Kim, Soo-Yeon;Choi, Ye-Seul;Kim, Dong-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.896-904
    • /
    • 2011
  • The features of the capture reaction of $CO_2$ by ammonia solution have been investigated along with the effect of temperature on the reaction based upon computer program-utilizing calculation and thermodynamic estimation. The stable region of $CO{_3}^{2-}$ was observed to increase with temperature and the change of the stable region of $CO{_3}^{2-}$ with temperature was greater than the temperature variation of the stable region of other carbonate species. The distribution diagram for $NH_4{^+}-NH_3$ system was constructed and the rise of temperature resulted in the decrease of the stability of $NH_4{^+}$ ion, which was thought to be due to the endothermic nature of its acidic dissociation. Considering the introduction of $Ca^{2+}$ ion in the carbon capture reaction by $NH_4{^+}$, the temperature was observed to be important in the determination of the order of reaction between carbonate ion and these cations. The removal process of $CO_2$ gas by ammonia solution was presumed to occur in open system and the temperature variations of the concentration of carbonate system species along with their total concentration were calculated for the proper control and design of the real process.

Hybrid adaptive neuro-fuzzy inference system method for energy absorption of nano-composite reinforced beam with piezoelectric face-sheets

  • Lili Xiao
    • Advances in nano research
    • /
    • v.14 no.2
    • /
    • pp.141-154
    • /
    • 2023
  • Effects of viscoelastic foundation on vibration of curved-beam structure with clamped and simply-supported boundary conditions is investigated in this study. In doing so, a micro-scale laminate composite beam with two piezoelectric face layer with a carbon nanotube reinforces composite core is considered. The whole beam structure is laid on a viscoelastic substrate which normally occurred in actual conditions. Due to small scale of the structure non-classical elasticity theory provided more accurate results. Therefore, nonlocal strain gradient theory is employed here to capture both nano-scale effects on carbon nanotubes and microscale effects because of overall scale of the structure. Equivalent homogenous properties of the composite core is obtained using Halpin-Tsai equation. The equations of motion is derived considering energy terms of the beam and variational principle in minimizing total energy. The boundary condition is assumed to be clamped at one end and simply supported at the other end. Due to nonlinear terms in the equations of motion, semi-analytical method of general differential quadrature method is engaged to solve the equations. In addition, due to complexity in developing and solving equations of motion of arches, an artificial neural network is design and implemented to capture effects of different parameters on the inplane vibration of sandwich arches. At the end, effects of several parameters including nonlocal and gradient parameters, geometrical aspect ratios and substrate constants of the structure on the natural frequency and amplitude is derived. It is observed that increasing nonlocal and gradient parameters have contradictory effects of the amplitude and frequency of vibration of the laminate beam.

Hydrogen Conversion of Syngas by Using WGS Reaction in a Coal Gasifier (가스화기에서 WGS 반응을 통한 합성가스의 수소 전환)

  • Lee, See Hoon;Kim, Jung Nam;Eom, Won Hyun;Baek, Il Hyun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.1
    • /
    • pp.12-19
    • /
    • 2013
  • A gasification process with pre-combustion $CO_2$ capture process, which converts coal into environment-friendly synthetic gas, might be promising option for sustainable energy conversion. In the coal gasification for power generation, coal is converted into $H_2$, CO and $CO_2$. To reduce the cost of $CO_2$ capture and to maximize hydrogen production, the removal of CO and the additional production of hydrogen might be needed. In this study, a 2l/min water gas shift system for a coal gasifier has been studied. To control the concentration of major components such as $H_2$, CO, and $CO_2$, MFCs were used in experimental apparatus. The gas concentration in these experiments was equal with syngas concentration from dry coal gasifiers ($H_2$: 25-35, CO: 60-65, $CO_2$: 5-15 vol%). The operation conditions of the WGS system were $200-400^{\circ}C$, 1-10bar. Steam/Carbon ratios were between 2.0 and 5.0. The commercial catalysts were used in the high temperature shift reactor and the low temperature shift reactor. As steam/carbon ratio increased, the conversion (1-$CO_{out}/CO_{in}$) increased from 93% to 97% at the condition of CO: 65, $H_2$: 30, $CO_2$: 5%. However the conversion decreased with increasing of gas flow and temperature. The gas concentration from LTS was $H_2$: 54.7-60.0, $CO_2$: 38.8-44.9, CO: 0.3-1%.

Investigation of Applying Technical Measures for Improving Energy Efficiency Design Index (EEDI) for KCS and KVLCC2

  • Jun-Yup Park;Jong-Yeon Jung;Yu-Taek Seo
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.58-67
    • /
    • 2023
  • While extensive research is being conducted to reduce greenhouse gases in industrial fields, the International Maritime Organization (IMO) has implemented regulations to actively reduce CO2 emissions from ships, such as energy efficiency design index (EEDI), energy efficiency existing ship index (EEXI), energy efficiency operational indicator (EEOI), and carbon intensity indicator (CII). These regulations play an important role for the design and operation of ships. However, the calculation of the index and indicator might be complex depending on the types and size of the ship. Here, to calculate the EEDI of two target vessels, first, the ships were set as Deadweight (DWT) 50K container and 300K very large crude-oil carrier (VLCC) considering the type and size of those ships along with the engine types and power. Equations and parameters from the marine pollution treaty (MARPOL) Annex VI, IMO marine environment protection committee (MEPC) resolution were used to estimate the EEDI and their changes. Technical measures were subsequently applied to satisfy the IMO regulations, such as reducing speed, energy saving devices (ESD), and onboard CO2 capture system. Process simulation model using Aspen Plus v10 was developed for the onboard CO2 capture system. The obtained results suggested that the fuel change from Marine diesel oil (MDO) to liquefied natural gas (LNG) was the most effective way to reduce EEDI, considering the limited supply of the alternative clean fuels. Decreasing ship speed was the next effective option to meet the regulation until Phase 4. In case of container, the attained EEDI while converting fuel from Diesel oil (DO) to LNG was reduced by 27.35%. With speed reduction, the EEDI was improved by 21.76% of the EEDI based on DO. Pertaining to VLCC, 27.31% and 22.10% improvements were observed, which were comparable to those for the container. However, for both vessels, additional measure is required to meet Phase 5, demanding the reduction of 70%. Therefore, onboard CO2 capture system was designed for both KCS (Korea Research Institute of Ships & Ocean Engineering (KRISO) container ship) and KVLCC2 (KRISO VLCC) to meet the Phase 5 standard in the process simulation. The absorber column was designed with a diameter of 1.2-3.5 m and height of 11.3 m. The stripper column was 0.6-1.5 m in diameter and 8.8-9.6 m in height. The obtained results suggested that a combination of ESD, speed reduction, and fuel change was effective for reducing the EEDI; and onboard CO2 capture system may be required for Phase 5.

Enhancement of carbon dioxide absorption rate with metal nano particles (금속 나노입자를 이용한 이산화탄소 흡수 속도 촉진)

  • Choi, Young Ju;Youn, Min Hye;Park, Ki Tae;Kim, In Ho;Jeong, Soon Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6439-6444
    • /
    • 2015
  • With increasing concern about global warming, CCS (Carbon dioxide capture and storage) has attracted much attention as a promising technology for reducing $CO_2$ emission. It is necessary to develop the cost-effective absorbents materials in order to rapid commercialize CCS technologies. In this work, he study for the promotion of absorption rate in $CO_2$ capture system using metal nanoparticle were investigated. Three kinds of metal nanoparticle, cobalt, zinc, and nickel, were prepared by wet and dry method and effect of preparation method on the absorption rate of $CO_2$ were compared. Among the tested using pH method, nickel nanoparticle prepared by wet method showed the most significant improvement of $CO_2$ absorption rate. In case that metal nanoparticle is applied to CCS process, it is expected to be more efficient in $CO_2$ capture process due to reduce the size of absorption tower.

Chemical and Kinematic Properties of the Galactic Halo System

  • Jung, Jaehun;Lee, Young Sun;Kim, Young Kwang
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.80.2-80.2
    • /
    • 2017
  • We present chemical and kinematic properties of the Milky Way's halo system investigated by carbon-enhanced metal-poor (CEMP) stars identified from the Sloan Digital Sky Survey. We first map out fractions of CEMP-no stars (those having no over-abundances of neutron-capture elements) and CEMP-s stars (those with over-enhancements of the s-process elements) in the inner- and outer-halo populations, separated by their spatial distribution of carbonicity ([C/Fe]). Among CEMP stars, the CEMP-no and CEMP-s objects are classified by different levels of absolute carbon abundances, A(C). We investigate characteristics of rotation velocity and orbital eccentric for these subclasses for each halo population. Any distinct kinematic features identified between the two categories in each halo region provide important clues on the origin of the dichotomy of the Galactic halo.

  • PDF

Adsorption of CO2 on Amine-impregnated Mesorporous Silica (아민계 함침 메조포러스 실리카를 이용한 CO2 흡착)

  • Choi, Sung-Woo
    • Journal of Environmental Science International
    • /
    • v.20 no.7
    • /
    • pp.873-879
    • /
    • 2011
  • Adsorption experiment of carbon dioxide was performed on MCM41 silica impregnated with two kinds of EDA(ethylenediamine) and MEA(monoethanolamine). The prepared adsorbents were characterized by BET surface area, X-ray diffraction and FT-IR. The $CO_2$ capture study was investigated in a U type packed column with GC/TCD. The results of XRD for MCM-41 and amine-impregnated MCM41 showed typical the hexagonal pore system. BET results showed the MCM 41 impregnated amine to have a surface area of 141 $m^2/g$ to 595 $m^2/g$ and FT-IR revealed a N-H functional group at about 1400$cm^{-1}$ to 1600$cm^{-1}$. The $CO_2$ adsorption capacity on EDA and MEA was as follow: MCM41-EDA30 > MCM41 -EDA40 >MCM41-EDA20 >MCM-EDA10 and MCM41-MEA40 >MCM41-MEA30 > MCM41-MEA20> MCM41-MEA10. The MCM41-EDA30 showed the highest adsorption capacity due to physical adsorption and chemical adsorption by amino-group content. The results suggest that mesoporous media with EDA is effective adsorbent for $CO_2$ capture from flue gases.

Degradation of Monoethanolamine during Continuous Operation of a Laboratory Scale CO2 Absorption System (실험실 규모 이산화탄소 흡수장치의 연속운전시 모노에탄올아민 열화 특성)

  • Kang, Ji-A;Woo, Wongu;Lim, Ho-Jin
    • Journal of Environmental Science International
    • /
    • v.25 no.3
    • /
    • pp.385-393
    • /
    • 2016
  • Oxidative and thermal degradation of alkanolamines for a promising $CO_2$ capture technology of absorption might cause decrease in $CO_2$ capture efficiency and formation of hazardous byproducts. In this study, characteristics of a representative absorbent of monoehtanolamine (MEA) were examined for a long term operation using a laboratory scale absorption system. An $CO_2$ absorption system with ID 56 mm and absorption zone height 100 cm was developed for the characterization. Absorption solution of 30 wt% MEA was circulated at 100 mL/min to treat air with 15% $CO_2$ and 1 ppm NO at 10 L/min. Temperatures of absorber and stripper were maintained at $40^{\circ}C$ and $120^{\circ}C$, respectively. For the course of 5 weeks continuous operation, MEA concentration was decreased approximately by 70% and $CO_2$ removal efficiency was dropped from 95% to 65%. Ionic byproducts of $NH_4{^+}$, $NO_2{^-}$, and $NO_3{^-}$ were accumulated up to 48 g/mL, 0.2 g/mL, and 1.5 g/mL, respectively, tracking the variation of MEA concentration. Formation of various organic byproducts were also observed.

Experimental Study on Combustion Instability Characteristics of Model Gas Turbine Combustor at Various H2/CH4/CO Composition (H2/CH4/CO 연료조성 변화에 따른 모형 가스터빈 연소기 불안정 특성에 대한 실험적 연구)

  • Yoon, Jisu;Lee, Min-Chul;Joo, Seongpil;Kim, Jeongjin;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.6
    • /
    • pp.67-74
    • /
    • 2013
  • IGCC(Integrated Gasification Combined Cycle) system is candidates which can solve the environmental problems including global warming, since it can be easily combined with CCS(Carbon Capture System). In this research, combustion instability characteristics were studied at various fuel which are composed of $H_2/CH_4/CO$ mixture. Mode analysis for instabilities observed experimentally was conducted and the linearly increasing tendency of frequency was observed as the hydrogen content in fuel increases.