• Title/Summary/Keyword: carbon addition

Search Result 3,192, Processing Time 0.028 seconds

Cellular Adhesions and Protein Dynamics on Carbon Nanotube/Polymer composites Surfaces

  • Gang, Min-Ji;Wang, Mun-Pyeong;Im, Yeon-Min;Kim, Jin-Guk;Gang, Dong-U
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.45.2-45.2
    • /
    • 2010
  • Possessing of carbon nanotubes in biopolymer intrigued much interest due to their mechanical and unique nanoscale surface properties. Surface stiffness can be controlled by the amount of carbon nanotubes in polymer and surface wettability can be altered by the order of nanoscale surface roughness. Protein adsorption mechanism on nanostructured carbon nanotube/polymer thin film will be discussed in this study. In addition, we identified that mechanical stimuli also contribute the messenchymal stem cell and bone cell interactions. Importantly, live cell analysis system also showed altered morphology and cellular functions. Thus, embedding of carbon nanostructures simultaneously contribute to protein adsorption and cellular interactions. In conclusion, this study demonstrated the evidence that nanoscale surface features determine the subsequent biological interactions, such as protein adsorption and cellular interactions.

  • PDF

The Study on the Migration of Carbon in T23/T91 Dissimilar Metal Welds for Boiler (보일러용 T23/T91 이종용접부의 탄소이동에 관한 연구)

  • Park, Ki-Duck;Jung, Byong-Ho;Kang, Chang-Yong
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.27 no.6
    • /
    • pp.288-294
    • /
    • 2014
  • The study on the migration of carbon in T23/T91 dissimilar metal welds for the boiler was conducted at $600^{\circ}C$ with an increase of aging time from 1 to 100 hrs. Following results were obtained. The heavily etched dark band tended to increase from a molten boundary owing to an increase of aging time, which leads to form hard (T91) and soft (T23) zones with different hardness. It was found that carbon was migrated from T23 area to T91 area due to different carbon activities. In addition, soft and hard zones were formed in regional area mainly resulted from carbide dissolutions and precipitates.

The Characteristics of Sulfur Electrode with Carbon Nanotube

  • Ryu, Ho-Suk;Lee, Sang-Won;Kim, Ki-Won;Ahn, Joo-Hyun;Cho, Kwon-Koo;Cho, Gyu-Bong;Ahn, Hyo-Jun
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1216-1217
    • /
    • 2006
  • We investigated on the additive effect of carbon nanotube in the sulfur electrode on the first discharge curve and cycling property of lithium/sulfur cell. The sulfur electrode with carbon nanotube had two discharge plateau potentials and the first discharge capacity about 1200 mAh/g sulfur. The addition carbon nanotube into the sulfur electrode did not affect the first discharge behavior, but improved the cycling property of lithium/sulfur cell. The optimum content of carbon nanotube was 6 wt% of sulfur electrode

  • PDF

An Study on the Change of the critical J-value and the Fracture Morphology of the Vibration - Proof Natural Rubber due to Carbon Black (방진부품용 천연고무의 카본블랙에 의한 임계J값과 파단 모폴로지 변화에 관한 연구)

  • 김재훈;정현용;구병춘
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.72-79
    • /
    • 2002
  • The effects of carbon black on the critical J-value and the surface fracture morpology of the carbon-black filled natural rubbers were investigated. Different kinds of carbon blacks resulted in different critical J-values, surface, and roughness. It was noticed that the critical J-value was almost the same regardless of the length of a pre-crack. In addition, different kinds of carbon blacks resulted in different fracture morphologies, and micro-scale and macro-scale roughnesses. The critical J-value could be linearly expressed by the micro-scale roughness and the macro-scale roughness and it seemed related to the size distribution of carbon black particles. And we also found that the macro-scale ms roughness was more sensitive than the micro-scale ms roughness to the critical J-value by the result of correlation coefficient, r$^2$.

  • PDF

Platinum and carbon nano tube addition in carbon black counter electrode for dye-sensitized solar cells

  • Lee, Su Young;Kim, Sang Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2012.05a
    • /
    • pp.229-230
    • /
    • 2012
  • Platinum (Pt) has been commonly used as a counter electrode material in dye-sensitized solar cells, because it has high catalytic activity and electric conductivity as well as chemical inertness with iodide electrolyte. However, Pt is too expensive to be commercialized. Therefore, in the present study, carbon black counter electrode with Pt and carbon nano tube (CNT) was investigated. The power conversion efficiency with Pt added carbon black electrode was lower than hat of pure Pt electrode which was 6.47 %. By adding 3 wt% Pt to the carbon black counter electrode, the power conversion efficiency was maximized at 5.88 %. On them, additional adding of 1 wt % CNT, the power conversion efficiency (${\eta}$)wasincreasedupto6.21%. The reason of power conversion efficiency improvement with a proper amount of Pt and CNT was examined by comparing the impedance properties measured using EIS.

  • PDF

Physical and Electrical Properties of Carbon Black/PVDF Composite Electrode as Ohmic Joule Heater (면상발열체용 Carbon Black/PVDF 복합전극의 물리 및 전기적 특성)

  • Doh, Chil-hoon;Jin, Bong-soo;Moon, Seong-in;Chung, Young-Dong;Jeong, Dong-yong;Bang, Young-dal
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.692-695
    • /
    • 2009
  • Ohmic joule heating electrodes were developed for the electrical heater of the floor of a room. A composite slurry of super pure black and polyvinylidene fluoride with/without the additives of multi-walled carbon nanotube or kindney stone powder was coated as a thin film on the polyethylene terephthalate film. The performances of heating electrodes were evaluated checking specific conductivity, adhesion strength and hardness. The addition of kindney stone powder increases specific resistance and hardness in a small extent. However, the addition of carbon nanotube increases specific conductivity and hardness. The properties of various compositions of ohmic joule heating electrodes were evaluated.

A Study on the Reduction of Electric Arc Furnace Dust with Carbon (탄소에 의한 전기로 분진의 환원반응에 관한 연구)

  • 진영주;김영진;박병구;이광학;김영홍;이재운
    • Resources Recycling
    • /
    • v.7 no.3
    • /
    • pp.27-35
    • /
    • 1998
  • EAF dust generated from electric arc steelmaking process is classified as "hazardous" materials by tbe environmental regulation because of the existence of water leachable heavy metals such as Fe, Zn, Pb, and Cd. However, Fe and Zn among t the elements in the dust can be recovered to high valuable materials by applying a proper process. Therefore, in order to study t the possibility of recovery of iron from EAF dust, the effect oE carbon content and basicity, of synthesized EAF dust on the reduction rate of iron oxide was studied. Experimental results are as follows: TIle softening and melting temperature of the slag w was illcreased with increasing carbon addition amount [or carbon reduction eqUIvalent. At the carbon addition amount of 100% for carbon reduction equivalent and basicity of 1.7, reduction rate of $Fe_2O$ in the slag was the highest. The reaction order fur reduction of $Fe_2O$ by carbon was nearly first order.

  • PDF

Temperature Dependence of Carbon-13 Shieldings as a Probe for Conformational Equilibra

  • Jung Miewon
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.6
    • /
    • pp.595-599
    • /
    • 1992
  • The temperature dependence of C-13 chemical shifts are observed for the cyclooctanone arylhydrazones. The temperature-dependent chemical shifts for these derivatives are explained by postualating the existence of two equilibrating structures. In addition, the assignment between the $^{13}C$ signals of methylene carbon pairs can be done by application of the ${gamma}$ -substituent effect.