• 제목/요약/키워드: carbide-free bainite

검색결과 4건 처리시간 0.025초

TAS(Total Analysis System)을 이용한 SB-TRIP강에서의 2-D & 3-D 미세구조 분석 연구 (2-D & 3-D Observations on the Microstructure of Super Bainite TRIP Steels using Total Analysis System)

  • 설재복;이봉호;박찬경
    • 소성∙가공
    • /
    • 제19권1호
    • /
    • pp.44-49
    • /
    • 2010
  • It has been widely reported that carbide-free bainitic steels or super-bainite TRIP (SB-TRIP) steels for the automotive industry are a new family of steels offering a unique combination of high strength and ductility. Hence, it is important to exactly evaluate the volume fraction of RA and to identify the 3-D morphology of constituent phases, because it plays a crucial role in mechanical properties. Recently, as electron back-scattered diffraction (EBSD) equipped with focused ion beam (FIB) has been developed, 3-D EBSD technique for materials science are used to these steels. Moreover, newly developed atom probe tomography (APT) technique can provide the exact distribution and chemical concentration of alloying elements in a sub-nm scale. The APT analysis results indicate exactly the distribution and composition of alloying elements in the austenite and bainite phases of SB-TRIP steels with the atomic-scale resolution. And thus, no partitioning of aluminum and manganese atoms was showed between the austenite containing $7.73{\pm}0.39$ at% C and the bainitic ferrite associated with $0.22{\pm}0.06$ at% C in SB-TRIP steel.

TAS (Total Analysis System)를 이용한 SB-TRIP강에서의 2-D & 3-D 미세구조 분석 연구 (2-D & 3-D Observations on the microstructures of Super Bainitie TRIP Steels using Total Analysis System)

  • 설재복;임영록;박찬경
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.209-212
    • /
    • 2009
  • It has been widely reported that carbide-free bainitic steels or super-bainite WP (SB-TRIP) steels for the automotive industry are a new family of steels offering a unique combination of high strength and ductility. Hence, it is important to exactly evaluate the volume fraction of RA and to identify the 3-D morphology of constituent phases, because it plays a crucial role in mechanical properties. Recently, as electron back-scattered diffraction (EBSD) equipped with focused ion beam (FIB) has been developed, 3-D EBSD technique for materials science are used to these steels. Moreover, newly developed atom probe tomography (APT) technique can provide the exact distribution and chemical concentration of alloying elements in a sub-nm scale. The APT analysis results indicate exactly the distribution and composition of alloying elements in the austenite and bainite phases of SB-TRIP steels with the atomic-scale resolution. And thus, no partitioning of aluminum and manganese atoms was showed between the austenite containing $7.73{\pm}0.39$ at% C and the bainitic ferrite associated with $0.22{\pm}0.06$ at% C in the SB-TRIP steel.

  • PDF

부분 오스테나이트화 후 항온 변태한 1.0C-1.5Cr 베어링강의 미세조직 특성 (Microstructural Characterization in Partially Austenitized and Isothermally Transformed 1.0C-1.5Cr Bearing Steels)

  • 윤동주;최병영
    • 열처리공학회지
    • /
    • 제9권1호
    • /
    • pp.27-33
    • /
    • 1996
  • Metallographic observation was carried out by scanning and transmission electron microscopy to evaluate microstructural characteristics of partially austenitized and isothermally transformed 1.0C-1.5Cr bearing steel. It was observed that lower bainite formed in the local region of specimen partially austenitized and isothermally held at $250^{\circ}C$ for 1/3 hr and formed in almost all area of the specimen isothermally held at $250^{\circ}C$ for 2 hrs. Lower bainitic carbides with midrib was also observed in the specimen partially austenitized and isothermally held at $250^{\circ}C$ for 4 hrs. Midrib was nearly carbide-free region and thicker in the vicinity of spherical carbides than the other region. Lengthening speed of lower bainitic carbides was remarkabey increased at isothermal holding time ranging from 2 hrs to 4 hrs.

  • PDF

Use of High Zinc Bath Entry Strip Temperature to Solve Coating Problems

  • Sippola, Pertti;Smith, David
    • Corrosion Science and Technology
    • /
    • 제9권5호
    • /
    • pp.175-186
    • /
    • 2010
  • The auto industry is demanding more ductile high-strength steel grades to build lighter and stronger car bodies. The hot-dip galvanizing problems of these new steel grades are creating a demand for an improved method to control zinc wettability. The simplest way to improve zinc wettability on industrial hot-dip galvanizing lines is to increase the strip immersion temperature at zinc bath entry for enhancing the aluminothermic reaction. However, this practice increases the reactivity due to overheating the zinc in the snout which induces the formation of brittle Fe-Zn compounds at the strip/coating interface with the formation of higher amounts of dross in the zinc bath and snout contamination. Thus, this simple practice can only be utilized for short production periods of one to two hours without deteriorating coating quality. This problem has been solved by employing a technique that allows the use of a higher and attuned strip immersion temperature at zinc bath entry while still maintaining a constantly low zinc bath temperature. This has been proven to provide the solution for both the improved wettability and a significant reduction in the amounts of dross in the zinc bath.