• Title/Summary/Keyword: caramelization products (CP)

Search Result 2, Processing Time 0.015 seconds

Inhibition Effects of Caramelization Products from Sugar Solutions Subjected to Different Temperature on Polyphenol Oxidase (가열온도에 따른 당용액의 카라멜 생성물의 Polyphenol Oxidase에 대한 저해효과)

  • 이귀주;안선정
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.6
    • /
    • pp.1041-1046
    • /
    • 2001
  • Solutions of fructose, glucose and sucrose were heated without catalyst at various temperature for different length of time. Changes in the formation of early caramelization product and browning intensity as well as pH of heated sugar solutions were determined. Reducing powers of caramelization products (CP) and their inhibitory effects on polyphenol oxidase (PPO) were also determined and their correlations were discussed. The early CP and browning intensity increased with temperature and time, in the order of heated fructose>sucrose>glucose solutions (p<0.005), while pH decreased. pHs of sugar solutions heated at 20$0^{\circ}C$ showed in the range of 3.32 ~ 3.50. Reducing power of CP as well as their inhibitory effect on PPO also increased with temperature and time, respectively. Among sugar solutions, reducing power showed the same trends as above at both 15$0^{\circ}C$ and 17$0^{\circ}C$ (p<0.001). However, those of heated fructose solutions were the highest in the early stage, while those of heated sucrose solutions were the highest in the final stage at 20$0^{\circ}C$. This is due to the difference in CP formed. Sucrose solution heated at 20$0^{\circ}C$ showed the highest inhibitory effect, reducing PPO activity by 34.6%. From these results, it is considered that the inhibitory effect of CP on PPO is partly related to their reducing power.

  • PDF

Changes in the Content of Individual Phenolic Compounds in Apple Slices during Cold Storage (냉장저장 중 사과슬라이스의 개별페놀성분함량과 제변화)

  • Ahn, Sun-Choung
    • Journal of the Korean Society of Food Culture
    • /
    • v.23 no.4
    • /
    • pp.489-498
    • /
    • 2008
  • The objectives of this study were to provide fundamental information on how individual phenolic compounds form on the inside of apple slices during cold storage, the changes in the content of four types of phenols, ingredient variation of individual phenolic compounds and the influence of phenolic compounds on enzymatic browning. This study measured the changes in the content of soluble solids, pH and vitamin C in order to investigate the correlations between these variables. HD and FA were the main phenolic compounds found in the apple slices, and HD was the most prevalent phenol. Furthermore, comparison of the CG and EP content revealed that there were more CGs than EPs. The phenol content tended to decrease considerably in the fresh apple slices and water-dipped apple slices but only slightly in the CP from sucrose-dipped apple slices and 0.5% ascorbic acid solution-dipped apple slices. The degree of browning increased in the following order: fresh apple slices, water-dipped apple slices, 0.5% ascorbic acid solution-dipped apple slices and CP from sucrose-dipped apple slices. The vitamin C content tended to decrease in the fresh apple slices, water-dipped apple slices, 0.5% ascorbic acid solution-dipped apple slices and CP from sucrose-dipped apple slices. The pH tended to increase in all sample groups, but the pH of the water-dipped apple slices was lower than that of the comparison group. The CP from sucrose-dipped apple slices had the lowest value of pH. The change in soluble solids tended to increase in all treatment groups, but this increase was less in the CP from sucrose-dipped apple slice. Correlation analysis revealed a high degree of correlation between browning and chlorogenic acid content. The results of the present study show that, when stored in the fridge, the change in phenol ingredient content in apple slices influences the browning of the slices. The results also showed that HD and FA were the main phenolic compounds, while CG was shown to have the greatest influence on browning.