자동차의 번호판은 각각의 차량을 추분 할 수 있는 것으로, 번호판의 문자를 인식함으로써 전국에 등록되어 있는 모든 차량 중에 1 대를 폭정 지을 수 있다. 그러나 기존의 연구방법 대부분은 번호판 문자 중에서 큰 숫자 4개만을 인식하는 것으로 전국적인 규모에서 완전한 차량인식이 불충분하였다. 따라서 본 논문에서는 차량의 정면에서 촬영한 영상에서 번호판을 추출하고, 그 안에 표기된 모든 문자를 인식하는 방법을 제안한다. 본 연구에서 사용된 방법은 허프변환과 번호판의 형상특징을 이용하여 번호판영역을 추출하고, 추출된 번호판에서 문자의 위치적 특징을 사용하여 각 문자를 추분하고 인식하였다. 160장의 샘플사진으로 실험해 본 결과 번호판 영역을 추출하고, 문자인식을 모두 성공한 종합성공률은 87.5%의 결과를 나타내었다.
본 논문에서는 도로를 주행하는 차량영상으로부터 번호판의 인식에 대한 연구이다. 차량을 검출하기 위해 두 프레임의 차를 이용하여 도로상에서 차량을 분리하였고, 번호판 영역을 추출하기 위해 명암도 변화의 파형 곡선 결과에 임계값을 적용하여 번호판을 추출하였다. 번호판 영역 검출은 96.05%의 검출결과를 얻었으며, 차량의 번호판 문자인식은 신경망을 통하여 학습 시켰 그 성능은 잭나이프 기법을 통해 측정하였다. 학습데이터에 대해서는 99.85 비학습데이터에 대해서는 88.15%의 인식율을 보였다.
본 논문에서는 획득한 차량 영상에서, 차량 번호판의 후보영역을 동적으로 할당하여 번호판을 추출하고, 이중 템플릿 매칭을 이용하여 인식하는 방법을 제안하였다. 차량 번호판 영역은 다른 영역에 비해 영상의 밀도값이 높다는 것을 근거로, 후보영역을 투영하여 추출된 영상의 밀도값과 기준밀도값을 비교하여 차이가 임계값 이하를 만족한 때 차량 번호판 영역으로 추출하고 만족하지 않을 때는 다음 후보영역을 투영하여 차량 번호판 영역을 추출하였다. 추출된 번호판 영역에서 문자와 숫자영역으로 분할된 입럭패턴과 표준패턴을 흑화소로 1차 매칭하고, 이 중 유사도가 높은 표준패턴과 다시 백화소로 2차 매칭하는 이중 템플릿 매칭으로 인식하였다.
차량 번호판 인식 시스템은 크게 번호판 영역의 추출과 인식 단계로 구분된다. 본 논문에서는 전처리단계로써 임계화 방식을 이용하여 번호판 영역을 추출한다. 차량 영상을 임계화하고 영상에서 발생되는 잡음을 제거한다. 잡음이 제거된 차량 영상에서 각 라인의 밀도비율을 계산하여 번호판 영역에서 나타나는 밀도의 비율과 비슷하게 나타나는 영역을 후보영역으로 설정한다. 설정된 후보영역이 번호판 영역의 특징과 유사하게 나타나는 부분을 추출한다. 그리고 추출된 번호판 영역은 코호넨 알고리즘의 2${\times0}$2마스크에 적용시켜서 윤곽선을 추출하고, 번호판의 문자와 숫자를 인식한다. 코호넨 알고리즘의 2${\times0}$2마스크를 이용하게 되면, 윤곽선의 잡음을 최대한으로 줄여주는 특성을 가진다. 잡음이 제거된 후에, 번호판의 문자와 숫자들을 코호넨 알고리즘을 이용하여 인식하였다. 실험 결과에서는 임계화 작업을 이용한 번호판 추출과 코호넨 알고리즘을 이용한 번호판 인식이 우수하는 것을 알 수 있다.
Proceedings of the Korea Institute of Convergence Signal Processing
/
2000.08a
/
pp.245-248
/
2000
자동차 번호판 인식 시스템에서 가장 중요한 요소는 자동차 이미지 영역에서 번호판 영역을 추출, 추출된 영역에서 문자 추출, 추출된 문자의 인식 등의 과정이다. 본 논문은 자동차 번호판 인식 과정에서 적응 알고리즘을 이용하여 보다 정확한 인식이 될 수 있도록 한다. 본 논문에서 사용하는 적응 알고리즘은 기존의 방식과는 달리 특정한 알고리즘을 이용한 인식을 하지 않고 다양한 알고리즘을 이용한 인식 결과의 조합으로 최적의 해법을 찾는다. 번호판 인식을 위한 적응 알고리즘은 원형 정합 알고리즘, 벡터 알고리즘, 세선화 알고리즘 등이다. 적응 알고리즘을 이용한 실험 결과 자동차 이미지에 대해서 90% 이상 인식이 가능함을 확인할 수 있었다.
본 논문에서는 에지 검출기에 의해 다양한 명암이 존재하는 차량 번호판 영역의 사각형 에지를 검출시 사용되는 소벨 및 Prewitt, Roberts, 가우시안의 라플라시안, 그리고 Canny 검출기를 사용하여 처리 속도와 에지 검출의 정확성을 실험하여 각 연산자의 성능을 평가하였다. 기존의 Sobel 에지 검출기는 적응적 임계값을 구하지 않으면 다양한 조명의 영향에 강인하지 못하다. 또한 Canny 에지 검출기는 조명의 영향에 강인하기는 하나, 계산량이 Sobel 보다는 많아 처리 속도가 느리다. 색상에 의해 번호판 후보 영역을 추출한 후 에지 검출기 번호판 내의 명암이 둘 이상으로 차량 번호판 영역에 대해서, 다양한 에지 검출기를 적용하여 속도와 에지 검출 성능을 비교 평가하고자 한다.
The Journal of the Korea institute of electronic communication sciences
/
v.8
no.4
/
pp.595-604
/
2013
Currently, registered number of imported vehicles is increasing rapidly over the years. Accordingly, environment improvements of vehicle maintenance company for maintenance of luxury vehicle such as imported vehicle are continuously being made. In this paper, we propose a key frame extraction method based on HSV color model for smart vehicle management system implementation to offer for customer reliability of maintenance vehicle. After automatically recognize the license plates of the vehicle using vehicle license plate recognition system when the vehicle come in the car center, we check the repair history and request of the vehicle based on it. We implement mobile services which provide extracted key frame images to the user after extract key frames from vehicle repair video. In addition, we verify the superiority of key frame extraction method by applying a smart vehicle management system. Finally, we convert the RGB color to HSV color to improve the performance of proposed key frame extraction scheme. As a result, we confirmed that our scheme is more excellence about 30% in terms of recall than RGB color model from the performance evaluations.
Recently, de-identification of personal information, which has been a long-cherished desire of the data-based industry, was revised and specified in August 2020. It became the foundation for activating data called crude oil[2] in the fourth industrial era in the industrial field. However, some people are concerned about the infringement of the basic rights of the data subject[3]. Accordingly, a development study was conducted on the Batch De-Identification Tool, a personal information de-identification automation tool. In this study, first, we developed an image labeling tool to label human faces (eyes, nose, mouth) and car license plates of various resolutions to build data for training. Second, an object recognition model was trained to run the object recognition module to perform de-identification of personal information. The automated personal information de-identification tool developed as a result of this research shows the possibility of proactively eliminating privacy violations through online services. These results suggest possibilities for data-based industries to maximize the value of data while balancing privacy and utilization.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2008.05a
/
pp.337-342
/
2008
최근 들어 기존의 녹색 바탕 차량 번호판에서, 흰색 바탕의 신 차량 번호판으로 교체되고 있다. 하지만 아직 기존 차량 번호판이 신 차량 번호판으로 전면 교체되지 않아 두 번호판 모두 사용되고 있다. 따라서 주차관리 시스템, 속도위반, 신호 위반 등 무인 카메라를 이용한 시스템에서, 기존 차량 번호판과 신 차량 번호판의 특징에 맞는 인식 시스템이 요구된다. 본 논문에서는 이러한 문제를 해결하기 위해 기존 차량 번호판과 신 차량 번호판을 통합한, 지능형 차량 번호판 인식 시스템을 제안한다. 무인 카메라에서 획득된 차량 영상에서 번호판의 색상 정보를 이용하여 기존 차량 번호판과 신 차량 번호판을 구분한다. 기존 차량 번호판인 경우에는 HSI 컬러 공간을 이용하여 이진화를 적용하며, 신 차량 번호판인 경우에는 블록 이진화를 적용한다. 이진화된 영상을 대상으로 차량의 형태학적 특징을 이용하여 잡음을 제거한 후, 차량 번호판 영역을 추출한다. 추출된 차량 번호판 영역에 대해 Labeling 알고리즘을 적용하여 개별 문자를 추출한다. 추출된 개별 문자는 FCM 알고리즘을 적용하여 인식한다. 제안된 차량 번호판 추출 및 인식 방법의 성능을 평가하기 위해 160장의 기존 차량 영상과 100장의 신 차량 영상을 대상으로 실험한 결과, 제안된 차량 번호판 추출 및 인식 방법이 실험을 통해서 효율적인 것을 확인하였다.
Park, Young-Kyu;Park, Je-Kang;On, Han-Ik;Kang, Dong-Joong
Journal of Institute of Control, Robotics and Systems
/
v.21
no.11
/
pp.1008-1016
/
2015
This paper proposes a method for detecting the front side of vehicles. The method can find the car side with a license plate even with complicated and cluttered backgrounds. A convolutional neural network (CNN) is used to solve the detection problem as a unified framework combining feature detection, classification, searching, and localization estimation and improve the reliability of the system with simplicity of usage. The proposed CNN structure avoids sliding window search to find the locations of vehicles and reduces the computing time to achieve real-time processing. Multiple responses of the network for vehicle position are further processed by a weighted clustering and probabilistic threshold decision method. Experiments using real images in parking lots show the reliability of the method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.