• Title/Summary/Keyword: capsicum

Search Result 765, Processing Time 0.03 seconds

Non-pungent Capsicum Contains a Deletion in the Capsaicinoid Synthetase Gene, which Allows Early Detection of Pungency with SCAR Markers

  • Lee, Choong-Jae;Yoo, Eun Young;Shin, Joo Hyun;Lee, Jemin;Hwang, Hee-Sook;Kim, Byung-Dong
    • Molecules and Cells
    • /
    • v.19 no.2
    • /
    • pp.262-267
    • /
    • 2005
  • The capsaicinoid synthetase (CS) gene cosegregated perfectly with the C locus, which controls the presence of pungency, in 121 $F_2$ individuals from a cross between 'ECW123R' and 'CM334', both of Capsicum annuum. We concluded that CS and C are tightly linked. Sequence analysis of the genes of four pungent and four non-pungent pepper lines showed that the non-pungent peppers had a 2,529 bp-deletion in the 5' upstream region of CS. We have developed molecular markers of the C locus to detect pungency at the seedling stage. Based on the deleted sequence, we developed five SCAR markers, two of them being codominant. These SCAR markers will be useful for easy, accurate, and early detection of non-pungent individuals in breeding programs.

Identification of a Third Haplotype of the Sequence Linked to the Restorer-of-fertility (Rf) Gene and Its Implications for Male-Sterility Phenotypes in Peppers (Capsicum annuum L.)

  • Min, Woong-ki;Lim, Heerae;Lee, Young-Pyo;Sung, Soon-Kee;Kim, Byung-Dong;Kim, Sunggil
    • Molecules and Cells
    • /
    • v.25 no.1
    • /
    • pp.20-29
    • /
    • 2008
  • Cytoplasmic male sterility (CMS), one of the most important traits in crop breeding, has been used for commercial seed production by $F_1$ hybrid cultivars of pepper (Capsicum annuum L.). To develop reliable molecular markers for allelic selection of the Restorer-of-fertility (Rf) gene, which is known to be a major determinant of pollen fertility restoration in peppers, a sequence of approximately 10 kb flanking an RAPD fragment closely linked to the Rf locus was obtained by genome walking. A homology search revealed that this sequence contained an LTR retrotransposon and a non-LTR LINE-like retrotransposon. Sequencing of this Rf-linked region to search for polymorphisms between a dominant and recessive allele revealed 98% nucleotide sequence identity between them. A third polymorphic haplotype of the Rf-linked sequence, which has 94-96% nucleotide sequence identity with the two previously isolated haplotypes, was identified among a large number of breeding lines. Utilizing polymorphic sequences in the haplotypes, PCR markers were developed for selection of particular haplotypes and used to examine the distribution of the haplotypes in diverse breeding lines, cultivars, and C. annuum germplasms. Surprisingly, the third haplotype was the predominant type in C. annuum germplasms, while its frequency in $F_1$ hybrid cultivars was relatively low. Meanwhile, analysis of breeding lines whose Rf allele genotypes and male-sterility phenotypes were already known revealed that the third haplotype was mainly present in exotic breeding lines that cause unstable male-sterility when combined with sterile cytoplasms.

Histopathology of Red Pepper Plant Infected with Colletotrichum dematium f. sp. capsicum (탄저병균 Colletotrichum dematium f. sp. capsicum에 감염된 고추의 병태조직학적 관찰)

  • Lee Sang Bum;Chung Bong Koo;Shim Jae Sup
    • Korean Journal Plant Pathology
    • /
    • v.2 no.3
    • /
    • pp.185-192
    • /
    • 1986
  • Upon germination, a conidium was septated in accordance with number of germ tubes. The percentages of ppressorial formation were not different between the resistant cultivars (Kumchang NO. 2 and Hongilpum) and the susceptible cultivars (Haneulcho and Saegochu). Appressorial form was various such as round, elliptic or star-shapped. The maximum number of appressoria was shown at 12 hours after inoculation. By 24 hours fter inoculation, hypersensitive tiny brown lesions were observed on the leaves and fruits of the resistant cultivars. Epidermal cells under cuticle layer of the resistant Kumchang NO. 2 fruit showed severe plasmolysis, while on the susceptible cultivars, the lession was largely extended to following incubation. Subcuticular infection hyphae were profusely colonized in the disintegrated tissues. Acervuli and setae on the stromatic structure ere formed at 96 hours. The infected seed coat was not only severely collapsed, but also infection hyphae were observed on the disintegrated seed coat, resulting severe plasmolysis of nucellus and embryo.

  • PDF