• Title/Summary/Keyword: capillary-porous

Search Result 88, Processing Time 0.026 seconds

Fabrication and Pore Characteristics of Cu Foam by Slurry Coating Process

  • Park, Dahee;Jung, Eun-Mi;Yang, Sangsun;Yun, Jung-Yeul
    • Journal of Powder Materials
    • /
    • v.22 no.2
    • /
    • pp.87-92
    • /
    • 2015
  • Metallic porous materials have many interesting combinations of physical and geometrical properties with very low specific weight or high gas permeability. In this study, highly porous Cu foam is successfully fabricated by a slurry coating process. The Cu foam is fabricated specifically by changing the coating amount and the type of polyurethane foam used as a template. The processing parameters and pore characteristics are observed to identify the key parameters of the slurry coating process and the optimized morphological properties of the Cu foam. The pore characteristics of Cu foam are investigated by scanning electron micrographs and micro-CT analyzer, and air permeability of the Cu foam is measured by capillary flow porometer. We confirmed that the characteristics of Cu foam can be easily controlled in the slurry coating process by changing the microstructure, porosity, pore size, strut thickness, and the cell size. It can be considered that the fabricated Cu foams show tremendous promise for industrial application.

Experimental study on the heat transfer characteristics of evaporative transpiration cooling (증발분출냉각의 열전달 특성에 관한 실험적 연구)

  • 이진호;남궁규완;김홍제;주성백
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1130-1137
    • /
    • 1988
  • Heat transfer characteristics of evaporative transpiration cooling was investigated experimentally in the range of coolant mass flux, 0.002kg/m$^{2}$.sec~0.015m$^{2}$.sec. Glass beads, sand and copper particles were used as porous media and distilled water was used as a conant. The existence of evaporation zone was confirmed on this experimental conditions and its length increases with increasing article size and with decreasing mass flux. In order to get the low surface temperature, porous materials with high thermal conductivity is preferred when the panicle sizes are same, and small particles with low porosity is effective in case of the same material. Due to the relatively small coolant mass flux, evaporative transpiration cooling system could be stable by the capillary effect.

Numerical Simulation of Immiscible Water-Gas Simultaneous Flow in the absence of Capillary Force in a Single Fracture (단일절리에서 모세관압을 고려하지 않은 불혼합성 물과 가스의 동시거동 해석)

  • 한일영;서일원
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.2
    • /
    • pp.69-81
    • /
    • 2001
  • The constitutive relation among capillary pressure, saturation and relative permeability should be predetermined in order to simulate immiscible water-gas flow in porous media. The relation between saturation and relative permeability becomes more important when the capillary force can be disregarded and viscous friction force governs the flow. In this study, a 2-dimensional finite difference numerical model was developed, in which the variation of viscosity with pressure and that of relative permeability with water saturation can be treated. Seven cases of parallel plate tests were performed in order to obtain the characteristic equation of relative permeability which would be used in. the developed numerical model. It was not possible, however, to match the curves of relative permeability from the plate tests with the existing emperical models. Consequently a logistic equation was proposed as a new emperical model. As this model was composed of the parameter involving aperture size, any aperture size of fracture can be applied to the model. For the purpose of verification, the characteristic equation of relative permeability was applied to the developed numerical model and the computed results were compared with those of plate test. As a result of application of numerical model, in order to check the field applicability, to single fracture surrounding an underground storage cavern, the simultaneous flow of water and propane gas was able to be simulated properly by the model.

  • PDF

Cooling Technique for Electronic Equipments using a small scale CPL heat pipe (소형 CPL 히트파이프를 이용한 전자장치 냉각 기술)

  • Kang, Sarng-Woo;Lee, Yoon-Pyo
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1241-1246
    • /
    • 2004
  • The heat flux on a chip is rapidly increasing with decreasing the size of one. It is necessary to properly cool the high heat flux chip. One of the promising cooling methods is to apply CPL heat pipes with porous materials, for example PVA, polyethylene, and powder sintered metal plate and with microchannels in the evaporator. A small scale CPL heat pipe with PVA as wick was designed and manufactured. Since the height difference between the evaporator and the condenser is a crucial parameter in the CPL heat pipes, the performance of the heat pipes depending on the parameter was investigated. The parameter is higher the performance is better. However, the improvement rate of the performance does not increase the increase rate of the height. In addition to, the parameter effect depending on heat input was investigated.

  • PDF

Phase Equilibrium of the Carbon Dioxide and Methane Hydrate in Silica Gel Pores and Thermodynamic Prediction (실리카겔 공극에서의 이산화탄소 및 메탄 하이드레이트 상평형 측정 및 열역학적 예측)

  • Kang, Seong-Pil
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.477-480
    • /
    • 2007
  • Hydrate phase equilibrium for the binary CO2+water and CH4+water mixtures in silica gel pore of nominal 6, 30, and 100 nm were measured and compared with the cacluated results based on van der Waals and Platteeuw model. At a specific temperature three-phase hydrate-water-vapor (HLV) equilibrium curves for pore hydrates were shifted to the higher-pressure condition depending on pore sizes when compared with those of bulk hydrates. Notably, hydrate phase equilibria for the case of 100 nominal urn pore size were nealy identical with those of bulk hydrates. The activities of water in porous silica gels were modified to account for capillary effect, and the calculation results were generally in good agreement with the experimental data.

  • PDF

Permeability of pH-sensitive membranes grafted by Fenton-type reaction: An experimental and modeling study

  • Gac, Jakub M.;Bojarska, Marta;Stepniewska, Izabela;Piatkiewicz, Wojciech;Gradon, Leon
    • Membrane and Water Treatment
    • /
    • v.6 no.5
    • /
    • pp.411-422
    • /
    • 2015
  • Membrane modification by different concentrations of acrylic acid has been described. Grafting of acrylic acid to the surface of a polypropylene membrane was obtained by a Fenton-type reaction. Membrane permeability seemed to have been dependent on the value of pH in the solution. To explain tendency, a simple theoretical model was developed. The model incorporates explicitly statistical conformations of a polyacid chain grafted onto the pore surface. The charged capillary model with a varying diameter for porous membranes was then used to evaluate the permeability of the membrane. It has been shown both theoretically and experimentally that the permeability of a grafted membrane depends on the pH of the solution.

NUMERICAL SOLUTION FOR WOOD DRYING ON ONE-DIMENSIONAL GRID

  • Lee, Yong-Hun;Kang, Wook;Chung, Woo-Yang
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.11 no.1
    • /
    • pp.95-105
    • /
    • 2007
  • A mathematical modeling for the drying process of hygroscopic porous media, such as wood, has been developed in the past decades. The governing equations for wood drying consist of three conservation equations with respect to the three state variables, moisture content, temperature and air density. They are involving simultaneous, highly coupled heat and mass transfer phenomena. In recent, the equations were extended to account for material heterogeneity through the density of the wood and via the density variation of the material process, capillary pressure, absolute permeability, bound water diffusivity and effective thermal conductivity. In this paper, we investigate the drying behavior for the three primary variables of the drying process in terms of control volume finite element method to the heterogeneous transport model on one-dimensional grid.

  • PDF

비포화 흐름에서 Hysteresis 모델의 비교 연구

  • 박창근;선우중호
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1991.07a
    • /
    • pp.221-230
    • /
    • 1991
  • Various Models of the moisture content-capillary pressure hysteresie based on the approach of domain concept in porous media are compared with each other, Model III-1(Mualem, 1984) is superio to others as expected. A new model based on Model III-1 is proposed of which asuumption is the linearization of P$$($\theta$) accounting for the pore blockage effect against air-entry. The feature of this model is that only one branch of boundary curve is needed to calibrate it, which is the advantage to Model III-1. The prediction of boundary drying curve from boundary wetting curve using this model is better than that using Model I-1, II-1 compared with the experimental data. This model is to simulate scanning curves, while Model I-1, II-1 is not.

  • PDF

Simulations of LNAPL flow and distribution in heterogeneous porous media under dynamic hydyogeologic conditions

  • Cheon, Jeong-Yong;Lee, Jin-Yong;Lee, Kang-Kun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1999.10a
    • /
    • pp.39-43
    • /
    • 1999
  • 불포화대에서 LNAPL의 이동과 분포를 수치 모의를 통하여 예측하였다. 균질한 매질에서 LNAPL의 이동은 조립질 매질에서 빠르고, 세립질 매질에서 더 많은 면적으로 확산되며, 더 많은 LNAPL이 불포화대에 잔류한다. 조립질 매질내에 세립질층이 존재할 경우, 이 층이 지하수면으로부터 멀수록 LNAPL이 많이 포획된다. 조립질 매질에 세립질 또는 더 조립질인 매질이 렌즈 상으로 존재하는 환경에서는, LNAPL이 이들 렌즈를 통과하지 못한다. 불균질한 렌즈가 존재할 때의 LNAPL 분포를 초기조건으로 이용하여, 지하수 면의 수직 이동과 물의 침투에 따른 LNAPL의 이동을 모의하였다. 두 경우 모두 불포화대에 잔류되어 있던 LNAPL의 수직방향 이동이 증가되었다. 특히, 지하수면의 하강 시 LNAPL이 조립질 렌즈를 통해 이동하나, 세립질 렌즈를 통해서는 이동하지 못한다.

  • PDF

Phase Equilibrium of the Carbon Dioxide and Methane Hydrate in Silica Gel Pores and Thermodynamic Prediction (실리카겔 공극에서의 이산화탄소 및 메탄 하이드레이트 상평형 측정 및 열역학적 예측)

  • Kang, Seong-Pil
    • New & Renewable Energy
    • /
    • v.3 no.2 s.10
    • /
    • pp.47-52
    • /
    • 2007
  • Hydrate phase equilibrium for the binary $CO_{2}$+water and $CH_{4}$+water mixtures in silica gel pore of nominal 6, 30, and 100 nm were measured and compared with the cacluated results based on van der Waals and Platteeuw model. At a specific temperature three-phase hydrate-water-vapor (HLV) equilibrium curves for pore hydrates were shifted to the higher-pressure condition depending on pore sizes when compared with those of bulk hydrates. Notably, hydrate phase equilibria for the case of 100 nominal nm pore size were nearly identical with those of bulk hydrates. The activities of water in porous silica gels were modified to account for capillary effect, and the calculation results were generally in good agreement with the experimental data.

  • PDF