• 제목/요약/키워드: capillary-porous

검색결과 88건 처리시간 0.033초

다층토양에서의 물과 공기의 움직임 (Water and Air Movement in Bounded Layered Soil)

  • 선우중호
    • 물과 미래
    • /
    • 제8권2호
    • /
    • pp.56-60
    • /
    • 1975
  • Traditional descriptions of water movement in soils and of calculations of infiltration rates neglect the air movement and its compressibility. The movement of two fluids in the bounded layered porous medium is treated analytically and computer simulations are conducted for given boundary conditions and initial saturation profiles. The movement of a given saturation across the interface between the different soil layers is theoretically developed by considering the conservation of mass. It is shown that the existence of the interface affects the infiltration rate when the average total velocity is greater than zero. The transition from one layer to another layer cause a change in the capillary drive and consequently influences the infiltration rate.

  • PDF

상부가열인 다공물질내의 열파이프 현상에 관한 실험적 연구 (Experimental study of the heat pipe phenomenon in porous media heated from above)

  • 이진호;김홍제;함윤영;남궁규완
    • 대한기계학회논문집
    • /
    • 제12권4호
    • /
    • pp.825-832
    • /
    • 1988
  • 본 연구에서는 1차원 열흐름하에서 상부가 가열된 다공물질내의 열파이프 현 상과 관련하여 2상영역의 존재와 그 길이에 영향을 미치는 인자들을 실험적으로 관찰, 조사하였다.

마이크로 부동액막을 이용한 착상방지에 관한 실험적 연구 (An Experimental Study on the Frost Prevention using Micro Liquid Film of an Antifreezing Solution)

  • 장영수;윤원남
    • 설비공학논문집
    • /
    • 제17권5호
    • /
    • pp.459-467
    • /
    • 2005
  • The effect of anti freezing solution liquid film on the frost prevention is experimentally investigated. It is desirable that the antifreezing solution spreads widely on the heat exchanger surface forming thin liquid film to prevent frost nucleation and reduce the thermal resistance across the film. A porous layer coating technique is adopted to improve the wettedness of the anti freezing solution on a parallel plate heat exchanger. The antifreezing solution spreads widely on the heat exchanger surface with 100 $\mu$m thickness by the capillary force resulting from the porous structure. It is observed that the antifreezing solution liquid film prevents a parallel plate heat exchanger from frosting. The reductions of heat and mass transfer rate caused by thin liquid film are only $1\~2\%$ compared with those for non-liquid film surface.

소결 온도와 유지 시간에 따른 Fe-Cr-Al 다공성 금속의 제조 (Fabrication of Fe-Cr-Al Porous Metal with Sintering Temperature and Times)

  • 구본욱;이수인;박다희;윤중열;김병기
    • 한국분말재료학회지
    • /
    • 제22권2호
    • /
    • pp.100-104
    • /
    • 2015
  • The porous metals are known as relatively excellent characteristic such as large surface area, light, lower heat capacity, high toughness and permeability. The Fe-Cr-Al alloys have high corrosion resistance, heat resistance and chemical stability for high temperature applications. And then many researches are developed the Fe-Cr-Al porous metals for exhaust gas filter, hydrogen reformer catalyst support and chemical filter. In this study, the Fe-Cr-Al porous metals are developed with Fe-22Cr-6Al(wt) powder using powder compaction method. The mean size of Fe-22Cr-6Al(wt) powders is about $42.69{\mu}m$. In order to control pore size and porosity, Fe-Cr-Al powders are sintered at $1200{\sim}1450^{\circ}C$ and different sintering maintenance as 1~4 hours. The powders are pressed on disk shapes of 3 mm thickness using uniaxial press machine and sintered in high vacuum condition. The pore properties are evaluated using capillary flow porometer. As sintering temperature increased, relative density is increased from 73% to 96% and porosity, pore size are decreased from 27 to 3.3%, from 3.1 to $1.8{\mu}m$ respectively. When the sintering time is increased, the relative density is also increased from 76.5% to 84.7% and porosity, pore size are decreased from 23.5% to 15.3%, from 2.7 to $2.08{\mu}m$ respectively.

확장표면을 적용한 액체식 제습기에서 제습액 분배 특성에 관한 실험적 연구 (Experimental Study on Liquid Desiccant Distribution Characteristics at a Dehumidifier with Extended Surface)

  • 이민수;장영수;이대영
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.645-649
    • /
    • 2009
  • Liquid desiccant cooling technology can supply cooling by using waste heat and solar heat which are hard to use effectively. For compact and efficient design of a dehumidifier, it is important to sustain sufficient heat and mass transfer surface area for water vapor diffusion from air to liquid desiccant on heat exchanger. In this study, the plate type heat exchanger is adopted which has extended surface, and hydrophilic coating and porous layer coating are adopted to enhance surface wettedness. PP(polypropylene) plate is coated by porous layer and PET(polyethylene terephthalate) non-woven fabric is coated by hydrophilic polymer. These coated surfaces have porous structure, so that falling liquid film spreads widely on the coated surface foaming thin liquid film by capillary force. The temperature of liquid desiccant increases during dehumidification process by latent heat absorption, which leads to loss of dehumidification capacity. Liquid desiccant is cooled by cooling water flowing in plate heat exchanger. On the plate side, the liquid desiccant can be cooled by internal cooling. However the liquid desiccant on extended surface should be moved and cooled at heat exchanger surface. Optimal mixing and distribution of liquid desiccant between extended surface and plate heat exchanger surface is essential design parameter. The experiment has been conducted to verify effective surface treatment and distribution characteristics by measuring wall side flow rate and visualization test. It is observed that hydrophilic and porous layer coating have excellent wettedness, and the distribution can be regulated by adopting holes on extended surface.

  • PDF

다공성 매체 내 비혼성 대체 과정에서 주입 유량이 거동 양상에 미치는 영향 (The Effect of Flow Rate on the Process of Immiscible Displacement in Porous Media)

  • 박규령;김선옥;이민희;왕수균
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제23권1호
    • /
    • pp.1-13
    • /
    • 2018
  • A series of experiments using transparent micromodels with an artificial pore network etched on glass plates was performed to investigate the effects of flow rate on the migration and distribution of resident wetting porewater (deionized water) and injecting non-wetting fluid (n-hexane). Multicolored images transformed from real RGB images were used to distinguish n-hexane from porewater and pore structure. Hexane flooding followed by immiscible displacement with porewater, migration through capillary fingering, preferential flow and bypassing were observed during injection experiments. The areal displacement efficiency increases as the injection of n-hexane continues until the equilibrium reaches. Experimental results showed that the areal displacement efficiency at equilibrium increases as the flow rate increases. Close observation reveals that preferential flowpaths through larger pore bodies and throats and clusters of entrapped porewater were frequently created at lower flow rate. At higher flow rate, randomly oriented forward and lateral flowpaths of n-hexane displaces more porewater at an efficiency close to stable displacement. It may resulted from that the pore pressure of n-hexane, at higher flow rate, increases fast enough to overcome capillary pressure acting on smaller pore throats as well larger ones. Experimental results in this study may provide fundamental information on migration and distribution of immiscible fluids in subsurface porous media.

EFFECTS OF AL2O3 NANOPARTICLES DEPOSITION ON CRITICAL HEAT FLUX OF R-123 IN FLOW BOILING HEAT TRANSFER

  • SEO, SEOK BIN;BANG, IN CHEOL
    • Nuclear Engineering and Technology
    • /
    • 제47권4호
    • /
    • pp.398-406
    • /
    • 2015
  • In this study, R-123 flow boiling experiments were carried out to investigate the effects of nanoparticle deposition on heater surfaces on flow critical heat flux (CHF) and boiling heat transfer. It is known that CHF enhancement by nanoparticles results from porous structures that are very similar to layers of Chalk River unidentified deposit formed on nuclear fuel rod surfaces during the reactor operation period. Although previous studies have investigated the surface effects through surface modifications, most studies are limited to pool boiling conditions, and therefore, the effects of porous surfaces on flow boiling heat transfer are still unclear. In addition, there have been only few reports on suppression of wetting for decoupled approaches of reasoning. In this study, bare and $Al_2O_3$ nanoparticle-coated surfaces were prepared for the study experiments. The CHF of each surface was measured with different mass fluxes of $1,600kg/m^2s$, $1,800kg/m^2s$, $2,100kg/m^2s$, $2,400kg/m^2s$, and $2,600kg/m^2s$. The nanoparticle-coated tube showed CHF enhancement up to 17% at a mass flux of $2,400kg/m^2s$ compared with the bare tube. The factors for CHF enhancement are related to the enhanced rewetting process derived from capillary action through porous structures built-up by nanoparticles while suppressing relative wettability effects between two sample surfaces as a highly wettable R-123 refrigerant was used as a working fluid.

은행나무, 감나무, 가중나무 세포내강의 액체이동 (Capillary Flow in Different Cells of Ginkgo Biloba, Diospyros Kaki and Ailanthus Altissima)

  • 전수경
    • 한국가구학회지
    • /
    • 제26권2호
    • /
    • pp.179-185
    • /
    • 2015
  • A study was carried out to observe the 1% aqueous safranine solution flow speed in longitudinal and radial directions of softwood G. biloba, ring-porous wood A. altissima, and diffuse- porouswood D. kaki. In radial direction, ray cells and in longitudinal direction tracheids, vessel and wood fiber were considered for the measurement of liquid penetration speed at less than 12% moisture contents (MC). The length, lumen diameter, pit diameter, end wall pit diameter and the numbers of end wall pits determined for the flow rate. The liquid flow in the those cells was captured via video and the capillary flow rate in the ones were measured. Vessel in hardwood species and tracheids in softwood was found to facilitate prime role in longitudinal penetration. Radial flow speed was found highest in ray parenchyma of G. biloba. Anatomical features like the length and diameter, end-wall pit numbers of ray parenchyma were found also responsible fluid flow differences. On the other hand, vessel and fiber structure affected the longitudinal flow of liquids. Therefore, the average liquid penetration depth in longitudinal tracheids of G. biloba was found the highest among all cells considered in D. kaki and A. altissima.

Immobilization of Styrene-acrylamide Co-polymer on Either Silica Particles or Inner Surface of Silica Capillary for the Separation of D-Glucose Anomers

  • Ali, Faiz;Kim, Yune Sung;Cheong, Won Jo
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권2호
    • /
    • pp.539-545
    • /
    • 2014
  • Styrene-acrylamide co-polymer was immobilized on porous partially sub-$2{\mu}m$ silica monolith particles and inner surface of fused silica capillary ($50{\mu}m$ ID and 28 cm length) to result in ${\mu}LC$ and CEC stationary phases, respectively, for separation of anomeric D-glucose derivatives. Reversed addition-fragmentation transfer (RAFT) polymerization was incorporated to induce surface polymerization. Acrylamide was employed to incorporate amide-functionality in the stationary phase. The resultant ${\mu}LC$ and CEC stationary phases were able to separate isomers of D-glucose derivatives with high selectivity and efficiency. The mobile phase of 75/25 (v/v) acetonitrile (ACN)/water with 0.1% TFA, was used for HPLC with a packed column (1 mm ID, 300 mm length). The effects of pH and ACN composition on anomeric separation of D-glucose in CEC have been examined. A mobile phase of 85/15 (v/v) ACN/30 mM sodium acetate pH 6.7 was found the optimized mobile phase for CEC. The CEC stationary phase also gave good separation of other saccharides such as maltotriose and Dextran 1500 (MW~1500) with good separation efficiency (number of theoretical plates ~300,000/m).