• Title/Summary/Keyword: capillary pressure

Search Result 306, Processing Time 0.045 seconds

Continuous Viscosity Measurement of Non-Newtonian Fluids over a Range of Shear Rates Using a Mass-Detecting Capillary Viscometer

  • Sehyun Shin;Keum, Do-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.255-261
    • /
    • 2002
  • A newly designed mass-detecting capillary viscometer uses a novel concept to continuously measure non-Newtonian fluids viscosity over a range of shear rates. A single measurement of liquid-mass variation with time replaces the now rate and pressure drop measurements that are usually required by capillary tube viscometers. Using a load cell and a capillary, we measured change in the mass flow rate through a capillary tube with respect to the time, m(t), from which viscosity and shear rate were mathematically calculated. For aqueous polymer solutions, excellent agreement was found between the results from the mass-detecting capillary viscometer and those from a commercially available rotating viscometer. This new method overcomes the drawbacks of conventional capillary viscometers meassuring non-Newtonian fluid viscosity. First, the mass-detecting capillary viscometer can accurately and consistently measure non -Newtonian viscosity over a wide range of shear rate extending as low as 1 s$\^$-1/. Second, this design provides simplicity (i. e., ease of operation, no moving parts), and low cost.

Dynamic Deformational Characteristics of Subgrade Soils with Variations of Capillary Pressure and Water Content (모관흡수력 및 함수비에 따른 노상토의 동적변형특성 연구)

  • 김동수;김민종;서원석
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.109-122
    • /
    • 2002
  • The water content of soil near the ground subgrade varies seasonally, and dynamic deformational characteristics of soil are affected by the variation of water content. Contrary to previous studies which used various specimens of different compaction moisture contents, the influences of water content and capillary Pressure on dynamic deformational characteristics of soil were investigated using the given specimen controlling the matric suction. RC/TS(resonant column and torsional shear) testing equipment was modified so that it can control water content with changing capillary pressure(matric suction). RC/TS tests were performed on subgrade soil collected in the KHC(Korea Highway Corporation) test road. In the field, the cross-hole tests were performed and the water contents were measured at the same site to verify the feasibility and applicability of RC/TS test results. As water content decreased, the tendency of increasing shear moduli in field was well matched with laboratory test results.

Analysis of Pressure Drop and Heat Loss in Liquid Sodium Circulation Wick of AMTEC (AMTEC의 소디움액체 순환윅에서 압력손실 및 열손실해석)

  • Lee, Ki-Woo;Lee, Wook-Hyun;Rhi, Seok-Ho;Lee, Kye-Bock
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.9
    • /
    • pp.953-960
    • /
    • 2012
  • An AMTEC (alkali metal thermal electric converter) is a device that is used for the direct conversion of heat to electricity. Sodium is used as the working fluid, and its circulation is driven by a capillary wick. The wicks used for circulation include an evaporator wick, artery wick, and condenser wick, and each wick has a pressure drop because of the circulation of liquid and vapor. For the circulation of sodium, the capillary pressure of the evaporator wick must be greater than the total pressure drop in the wicks. In this study, the pressure drop in the evaporator wick, artery wick, and condenser wick and the heat loss from the evaporator to the condenser through the artery wick were analyzed for the design of a 100 W AMTEC prototype. It was found that a particle diameter of 10 ${\mu}m$ is suitable for the evaporator wick to maintain a capillary pressure greater than total pressure drop in the circulation loop.

Numerical Simulation of a Heat Pump Evaporator Considering the Pressure Drop in the Distributor and Capillary Tubes (분배기와 모세관을 고려한 히트펌프용 증발기 성능 모사)

  • Park, Young-Gi;Ye, Huee-Youl;Lee, Kwan-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.6
    • /
    • pp.476-486
    • /
    • 2012
  • A simulation program was developed to evaluate the heat transfer performance of a multi-pass fin-tube evaporator, considering the pressure drop in the distributor and capillary tubes. The effect of capillary tube length for each pass was analyzed with various inlet air flow types and distributions. The appropriate capillary tube length distribution and correlation were determined for various inlet air flow types and distributions. The correlated results agreed well with the simulation, with an average error of less than 7%. By applying an optimal capillary tube length distribution, the heat transfer rate was increased by 4~5% compared to cases with uniform tubelength distributions, for each of the inlet air flow types and distributions considered in this study.

Temperature-controlled Restrictor for UV Detection in Capillary Supercritical Fluid Chromatography

  • Pyo, Dong-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.9
    • /
    • pp.1429-1432
    • /
    • 2006
  • Polyaromatic hydrocarbons were separated by a capillary supercritical fluid chromatographic (SFC) column and detected by a UV detector at the wavelength of 280 $\mu$m. The temperature-controlled restrictor was designed for UV detection. The temperature-controlled restrictor is a 20 cm length of deactivated fused silica of 7 mm i.d. which is held right after UV detector of the capillary SFC. The temperature of the restrictor will control the flow rate of the supercritical carbon dioxide mobile phase through the capillary column in SFC. Thus as the pressure in the column is increased from 1500 psi to 4000 psi during a pressure program, the temperature of 7 $\mu$m fused-silica tube can be varied from 100 to 350 ${^{\circ}C}$ to maintain a constant flow rate.

Decrease in the Thickness of Capillary Fringe Induced by Surface Active Chemicals in the Groundwater (계면활성물질의 지하수적용에 의한 모관수대 두께의 감소)

  • Kim, Heonki;Shin, Seungyup;Yang, Haewon
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.6
    • /
    • pp.52-58
    • /
    • 2012
  • Capillary fringe divides the groundwater and the vadose zone controlling the diffusive mass transfer of contaminants and gases. The thickness of capillary fringe is of great importance for the rate of contaminant mass transfer across the capillary fringe. Application of surface active chemicals including surfactants and alcohol-based products into the subsurface environment changes the surface tension of the aqueous phase, which in turn, affects the thickness of the capillary fringe. In this study, a bench-scale model was used to assess the quantitative relationship between the surface tension and the thickness of the capillary fringe. An anionic surfactant (Sodium dodecylbenzene sulfonate, SDBS) and an aqueous solution of ethanol were used to control the surface tension of the groundwater. It was found that the thickness of the capillary fringe is directly proportional to the surface tension. The air entry pressures measured by the Tempe Pressure Cell at different surface tensions using SDBS (200 mg/L) and ethanol (20%, v/v) solutions were in good agreement with the thicknesses of the capillary fringe measured by the model. A simple method to correct the conventional Brooks-Corey model for estimating the air entry pressure was also presented.

The Role of Pulmonary Capillary Pressure in the Oxygen Free Radical-Induced Acute Lung Injury (산소기에 의한 급성 폐손상에서 폐모세혈관압의 역할에 관한 연구)

  • Yoo, Chul-Gyu;Kim, Young-Whan;Han, Sung-Koo;Shim, Young-Soo;Kim, Keun-Youl;Han, Yong-Chol
    • Tuberculosis and Respiratory Diseases
    • /
    • v.39 no.6
    • /
    • pp.474-483
    • /
    • 1992
  • Background: Regardless of its causes, acute lung injury is characterized pathophysiologically by increased pulmonary arterial pressure and the protein-rich edema. Many inflammatory mediators are known to be involved in the pathogenesis of acute lung injury, including oxygen free radicals (OFR). But the changes in pulmonary capillary pressure in the OFR-induced acute lung injury is not clear. While the pulmonary edema characterized by the movement of fluid and solutes is dependent on the pressure gradient and the alveolar-capillary permeability, the role of pulmonary capillary pressure in the development of pulmonary edema is also not well understood. Method: Male Sprague-Dawley rats were divided into 5 groups: normal control (n=5), xanthine/xanthine oxidase (X/XO)-treated group (n=7), catalase-pretreated group (n=5), papaverine-pretreated group (n=7), and indomethacin-pretreated group (n=5). In isolated perfused rat lungs, the sequential changes in pulmonary arterial pressure, pulmonary capillary pressure by double occlusion method, and lung weight as a parameter of pulmonary edema were determined. Results: Pulmonary arterial pressure and pulmonary capillary pressure were increased by X/XO. This increase was significantly attenuated by catalase and papaverine, but indomethacin did not prevent the X/XO-induced increase. Lung weight gain was also observed by X/XO perfusion. It was prevented by catalase. Papaverine did not completely block the increase, but significantly delayed the onset. Indomethacin had no effect on the increase in lung weight. Conclusion: These data suggest that increased pulmonary capillary pressure by OFR may aggravate pulmonary edema in the presence of increased alveolar-capillary permeability and this may not be mediated by cyclooxygenase metabolites.

  • PDF

Analysis and Evaluation of Capillary Passive Valves in Microfluidic Systems Using a Centrifugal Force

  • Cho, Han-Sang;Kim, Ho-Young;Kang, Ji-Yoon;Kwak, Seung-Min;Kim, Tae-Song
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.4
    • /
    • pp.155-159
    • /
    • 2004
  • This work reports the theoretical and experimental investigations of capillary bust valves to regulate liquid flow in microchannels. The theoretical analysis uses the Young-Laplace equation and geometrical considerations to predict the pressure at the edge of the valve opening. Numerical simulations are employed to calculate the meniscus shape evolution while the interface is pinned at the valve edge. Microchannels and valves are fabricated using soft lithography. A wafer-rotating system, which can adjust the driving pressure by rotational speed, induces a liquid flow. Experimentally measured valve-bursting pressure agrees with theoretical predictions.

Experimentation and modeling on the flow of R407c and R290 through capillary tubes (R407C 및 R290 냉매에 대한 모세관내 유동특성 실험 및 모델링)

  • 김용찬;조일용;최종민
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.4
    • /
    • pp.492-498
    • /
    • 1999
  • Mass flow rates of R407C and R290 through capillary tubes were measured with various capillary tube geometries and flow conditions. For all refrigerants tested in the present study, mass flow rate through the capillary tube was strongly dependent on the condensing pressure, subcooling and capillary length and diameter. The flow rate of R407C was 5~10[%] higher than that of R22 at the same condensing temperature and degree of subcooling, while flow rate for R290 was 40[%] lower than that for R22. Based on experimental results, an empirical correlation was developed using Pi theorem to predict the mass flow rate through capillary tubes. The predicted flow rates using the model were consistent with the experimental data within ${\pm}$10[%].

  • PDF