• Title/Summary/Keyword: capillary GC-ECD

Search Result 16, Processing Time 0.043 seconds

Simultaneous Analytical Method of Organochlorine and Pyrethroid Pesticides using GC(ECD) (GC-ECD를 이용한 유기염소계 밑 Pyrethroid계 농약 동시 분석법)

  • 김우성;이선화;김재이;정지윤;이명자;박영채;이영자;정성욱;이봉헌
    • Journal of Environmental Science International
    • /
    • v.12 no.4
    • /
    • pp.477-480
    • /
    • 2003
  • Pesticides were extracted from samples with 70% acetone and methylene chloride in order, and then cleaned up via open-column chromatography apparatus packed with florisil, and finally analyzed simultaneously the organochlorine and pyrethroid pesticides using GC(ECD). An ultra-2 fused silica capillary column was used to separate and identify the products. The resolution between the last isomeric peak of cypermethrin(59.987min) and the first isomeric peak of flucythrinate(60.043min) was not satisfactory. The last isomeric peak of fenvalerate(62.344min) and the first isomeric peak of fluvalinate(62.397min) were overlapped. Recoveries of soybean sample fer the most pesticides were 73.3% to 102.4%. Detection limits were between 0.004 and 0.063 ${\mu}$g/mg when this method was used.

Derivatization and Residual Determination of MCPP in Soil Leachate (토양 침투수중 MCPP의 유도체화 및 잔류분석)

  • Hong, Moo-Ki;Smith, Albert E.
    • Korean Journal of Environmental Agriculture
    • /
    • v.13 no.2
    • /
    • pp.199-208
    • /
    • 1994
  • Analytical methods for the determination of the derivatives of the herbicide (${\pm}$)-2-(4-chloro-2-methylphenoxy)propionic acid (MCPP) by capillary column gas chromatography with mass spectrometer (GC-MS) and electron-capture detection (GC-ECD) were studied. A successful procedure was introduced for the ester preparation using $H_2SO_4$, as the catalyst and the alcohol 2,2,2-trichloroethanol (TCE) or 2,2,2-trifluoroethanol (TFE). The identificaiton and elucidation of MCPP by GC-MS spectrometry following the esterification with diazomethane, $BF_3$/methanol, $H_2SO_4$/methanol, TCE, TFE, or pentafluorobenzyl bromide (PFB) were carried out. A comparison of the response-sensitivities among those MCPP esters was made with GC-ECD. Although the methylation product of MCPP was confirmed by GC-MS, its low sensitivity to the ECD limited the detection of MCPP. TCE, TFE, and PFB derivatization methods resulted in a high rate of MCPP esterifications and very sensitive ECD molecular responses. Based on efficiency, convenience, worker safety, and least sample contamination, TFE esterificaiton was considered as the superior method for MCPP analysis to the other methods of derivatization. An accurate method is described for quantifying MCPP in soil leachates by GC-ECD at very low concentrations without the requirement of a complicated clean-up process. As a result, MCPP residues at concentrations of less than $0.1{\mu}g$ in 100ml soil leachate were detected.

  • PDF

Biological Monitoring of Human Exposure to Volatile Halogenated Hydrocarbons Using Urinalysis with Capillary GC-ECD

  • Jung, Won-Tae;Sohn, Dong-Hun
    • Archives of Pharmacal Research
    • /
    • v.15 no.2
    • /
    • pp.109-114
    • /
    • 1992
  • For the risk assessment of human exposure to volatile halogenated hydrocarbons, a dynamic purge trap/on-column cryofocusing method using capillary gas chromatograph-$^{63}Ni$ electron capture detector and thermal desorption unit was applied to analyze the free forms, metabolites of 1, 1, 2-trichloroethylene and 1, 1, 2, 2-tetrachloroethylene. The urine sample was diluted with distilled water, hydrolyzed and sealed. Then the inert gas was infused to purge out free 1, 1, 2-trichloroethylene, free 1, 1, 2, 2-tetrachloroethylene and urichloroethanol. These compounds were trapped to $Tenax^R$ / GC-gas trap device throughout clean up tube. Being undertectable to gas chromatograph directly, trichloroacetic acid was methyl esterificated and trapped in the manner above mentioned. The optimal incubation time to get best recovery of methyl ester was 4 hours at $60^circ$C. The concentrations of free volatile halogenated hydrocarbons and their metabolites in urine were obtained of free volatile halogenated hydrocarbons and their metabolites in urine were obtained from 5 healthy volunteers. This analytical method is expected to make the biological monitoring more precise and convenient.

  • PDF

Development of an Official Method for Measurement of Fluazinam Residues for Quarantine of Imported and Exported Horticultural Products (수출입 원예작물의 검역을 위한 살균제 Fluazinam의 공정 잔류분석법 개발)

  • Kim, Gyeong-Ha;Ahn, Kyung-Geun;Kim, Gi-Ppeum;Hwang, Young-Sun;Chang, Moon-Ik;Kang, In-Kyu;Lee, Young Deuk;Choung, Myoung-Gun
    • Horticultural Science & Technology
    • /
    • v.34 no.1
    • /
    • pp.183-194
    • /
    • 2016
  • This experiment was conducted to establish an official determination method to measure fluazinam residue in horticultural crops for import and export using GC-ECD/MS. Fluazinam residue was extracted with acetone from fresh samples of four representative horticultural products, the vegetable crops green pepper and kimchi cabbage, and the fruit crops mandarin and apple. The acetone extract was diluted with saline water and n -hexane partitioning was used to recover fluazinam from the aqueous phase. Florisil column chromatography was additionally employed for final purification of the extract. Fluazinam was separated and quantitated by GC with ECD using a DB-17 capillary column. The horticultural crops were fortified with three different concentrations of fluazinam. Mean recoveries ranged from 82.5% to 99.9% in the four crops. The coefficients of variation were less than 10.0%. The quantitative limit of fluazinam detection was $0.004mg{\cdot}kg^{-1}$ in the four crop samples. GC/MS with selected-ion monitoring was also used to confirm the suspected residue. This analytical method was reproducible and sensitive enough to measure the residue of fluazinam in horticultural commodities for import and export.

Determination of Quintozene Residues in Agricultural Commodities Using GC-ECD/MS (GC-ECD/MS를 이용한 농산물 중 Quintozene의 잔류분석)

  • Ahn, Kyung-Geun;Kim, Gyeong-Ha;Kim, Gi-Ppeum;Hwang, Young-Sun;Hong, Seung-Beom;Lee, Young Deuk;Choung, Myoung-Gun
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.3
    • /
    • pp.195-203
    • /
    • 2015
  • Quintozene, pentachloronitrobenzene (PCNB) is a contact fungicide for control of soilborne phytopathogenic fungi during cultivation of diverse crops. It was introduced to agricultural use around 1930's as a substitute for mercurial disinfectants. Although quintozene had been first registered in Korea on 1969. However, now it was banned to use due to its high residue levels in selected harvest products. Also, high possibility is expected that the residue may be contained in imported agricultural commodities as it is still used widely over the world. Therefore, this study was conducted to establish a determination method for quintozene residue in crops using GC/ECD/MS. Quintozene residue was extracted with acetonitrile from representative samples of five raw products which comprised hulled rice, soybean, Kimchi cabbage, green pepper, and apple. The extract was diluted with saline water, and n-hexane partition was followed to recover quintozene from the aqueous phase. Florisil column chromatography was additionally employed for final clean up of the extract. The quintozene was quantitated by GLC with ECD, using a DB-1 capillary column. The crops were fortified with quintozene at 3 levels per crop. Mean recoveries ranged from 79.9% to 102.7% in five representative agricultural commodities. The coefficients of variation were less than 4.3%. Quantitative limit of quintozene was 0.004 mg/kg in representative five crop samples. A GC/MS with selected-ion monitoring was also provided to confirm the suspected residue. Therefore, this analytical method was reproducible and sensitive enough to determine the residue of quintozene in agricultural commodities.

Development of Analytical Method for Fipronil Residues in Agricultural Commodities Using GC-ECD/MS (GC-ECD/MS를 이용한 농산물 중 Fipronil의 잔류 분석법 개발)

  • Ahn, Kyung-Geun;Kim, Gyeong-Ha;Kim, Gi-Ppeum;Hwang, Young-Sun;Kang, In-Kyu;Lee, Young Deuk;Choung, Myoung-Gun
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.4
    • /
    • pp.309-317
    • /
    • 2015
  • BACKGROUND: An analytical method was developed using GC-ECD/MS to precisely determine the residue of fipronil, a phenylpyrazole insecticide used to control a wide range of foliar and soil-borne pests.METHOD AND RESULTS: Fipronil residue was extracted with acetone from representative samples of five raw products which comprised hulled rice, soybean, Kimchi cabbage, green pepper, and apple. The extract was diluted with saline water, and fipronil was partitioned into n-hexane/dichloromethane (20/80, v/v) to remove polar co-extractives in the aqueous phase. Florisil column chromatography was additionally employed for final purification of the extract. Fipronil was separated and quantitated by GC-ECD using a DB-17 capillary column. Accuracy of the proposed method was validated by the recovery from crop samples fortified with fipronil at 3 levels per crop in each triplication.CONCLUSION: Mean recoveries ranged from 86.6% to 106.0% in five representative agricultural commodities. The coefficients of variation were less than 10%. Limit of quantitation of fipronil was 0.004 mg/kg as verified by the recovery experiment. A confirmatory technique using GC/MS with selected-ion monitoring was also provided to clearly identify the suspected residue. Therefore, this analytical method was reproducible and sensitive enough to determine the residue of fipronil in agricultural commodities.

Studies on the Analytical Methods and Quantity of Residual Chlorfluazuron in Meat (식육중 Chlorfluazuron의 잔류분석법 및 잔류량에 관한 연구)

  • 박건상;홍무기;백선영;정병곤;박종세
    • Journal of Food Hygiene and Safety
    • /
    • v.12 no.4
    • /
    • pp.288-293
    • /
    • 1997
  • Analytical method using capillary GC/ECD was developed to determine trace residues of chlofluazuron, 1-[3, 5-dichloro-5-trifluoromethyl-2-pyridyloxy)phenyl]-3-(2, 6-difiuorobenzoyl), in meat, and applied to analyze the residues in domestic and imported meats. The analytical scheme developed does not require column chromatographic cleanup; chlorfiuazuron was extracted with diethyl ether and petroleum ether (50: 50), partitioned against acetonitrile, cleaned up with silica Sep-Pak cartridge, identified GC/ECD, and comfirmed by GC/MS. The mean recoveries of the pesticide in meat fortified with standard solution 0.1, 0.5, 0.1 mg/kg were ranged from 82 to 95%. The limit of detection and limit of quantitation were 0.001 and 0.005 mg/kg, respectively. Chlorfluazuron residues were not found in domestic samples, but found in imported Australian beef ranging from 0.02 to 0.17 mg/kg, detected by 18% among the samples.

  • PDF

Determination of residual pesticides in crude drugs - Gas chromatographic Analysis of 18 pesticides - (한약재중의 잔류농약 분석 - GC에 의한 18종 잔류농약의 분석 -)

  • Hwang, In-Sook;Choi, Byung-Hyun;Bae, Chong-Ho;Kim, Myung-Hee;Cho, Hae-Jeon
    • Korean Journal of Pharmacognosy
    • /
    • v.32 no.3 s.126
    • /
    • pp.200-211
    • /
    • 2001
  • This study was carried out to determine the 11 organochlorine, 7 organophosphorus residual pesticides in 251 crude drugs. These residual pesticides in herbal drugs were extracted with acetonitrile and the extracts were cleaned up via LC-florisil solid phase extraction column. The prepared samples were assayed for pesticide residues using GC-ECD, NPD with capillary column and identified by GC-MSD. Recoveries were $63.9{\sim}111.5%$ in the organochlorine pesticides and $69.8{\sim}92.4%$ in the organophosphorus pesticides, and detection limits were $0.001{\sim}0.65\;ppm$ in the organochlorine pesticides and $0.0009{\sim}0.0074\;ppm$ in the organophosphorus pesticides. Pesticide residues were detected in 9 cases.

  • PDF

Development of Simultaneous Analytical Method for Various Residual Pesticides Using GC-ECD (GC-ECD를 이용한 잔류 농약 다성분 동시 분석법 개발)

  • 김우성;손영욱;정지윤;안경아;홍무기;임무혁;이홍재;이봉헌;박흥재
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.1
    • /
    • pp.88-92
    • /
    • 2001
  • The simultaneous analytical method for 37 residual pesticides was developed by a gas chromatography with $^{63}$ Ni electron capture detector. Pesticides added in soybean sample were extracted with 70% acetone in water and methylene chloride in oder, and then cleaned up via open-column apparatus packed with florisil and alumina N. The Ultra-2 fused capillary column was used to separate the products. The resolution between the last isomeric peak of cypermethrin (56.398 min) and the first isomeric peak of flucythrinate (56.421 min) was not satisfactory and the last isomeric peak of fenvalerate(58.783 min) and the first isomeric peak of fluvalinate(58.835 min) was overlapped. Except for $\alpha$-BHC, dichlofluanid, captan, and captafol, most recoveries were showed over 70%.

  • PDF

Simultaneous Pesticide Analysis Method for Bifenox, Ethalfluralin, Metolachlor, Oxyfluorfen, Pretilachlor, Thenylchlor and Trifluralin Residues in Agricultural Commodities Using GC-ECD/MS (GC-ECD/MS를 이용한 농산물 중 Bifenox, Ethalfluralin, Metolachlor, Oxyfluorfen, Pretilachlor, Thenylchlor 및 Trifluralin의 동시 분석)

  • Ahn, Kyung Geun;Kim, Gi Ppeum;Hwang, Young Sun;Kang, In Kyu;Lee, Young Deuk;Choung, Myoung Gun
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.2
    • /
    • pp.104-116
    • /
    • 2018
  • BACKGROUND: This experiment was conducted to establish a simultaneous analysis method for 7 kinds of herbicides in 3 different classes having similar physicochemical property as diphenyl ether(bifenox and oxyfluorfen), dinitroaniline (ethalfluralin and trifluralin), and chloroacetamide (metolachlor, pretilachlor, and thenylchlor) in crops using GC-ECD/MS. METHODS AND RESULTS: All the 7 pesticide residues were extracted with acetone from representative samples of five raw products which comprised apple, green pepper, Kimchi cabbage, hulled rice and soybean. The extract was diluted with saline water and directly partitioned into n-hexane/dichloromethane(80/20, v/v) to remove polar co-extractives in the aqueous phase. For the hulled rice and soybean samples, n-hexane/acetonitrile partition was additionally employed to remove non-polar lipids. The extract was finally purified by optimized Florisil column chromatography. The analytes were separated and quantitated by GLC with ECD using a DB-1 capillary column. Accuracy and precision of the proposed method was validated by the recovery experiment on every crop samples fortified with bifenox, ethalfluralin, metolachlor, oxyfluorfen, pretilachlor, thenylchlor, and trifluralin at 3 concentration levels per crop in each triplication. CONCLUSION: Mean recoveries of the 7 pesticide residues ranged from 75.7 to 114.8% in five representative agricultural commodities. The coefficients of variation were all less than 10%, irrespective of sample types and fortification levels. Limit of quantitation (LOQ) of the analytes were 0.004 (etahlfluralin and trifluralin), 0.008 (metolachlor and pretilachlor), 0.006 (thenylchlor), 0.002 (oxyfluorfen), and 0.02 (bifenox) mg/kg as verified by the recovery experiment. A confirmatory technique using GC/MS with selected-ion monitoring was also provided to clearly identify the suspected residues. Therefore, this analytical method was reproducible and sensitive enough to determine the residues of bifenox, ethalfluralin, metolachlor, oxyfluorfen, pretilachlor, thenylchlor, and trifluralin in agricultural commodities.