• Title/Summary/Keyword: capacity spectrum

Search Result 435, Processing Time 0.033 seconds

Effect of Demand Spectrums on the Accuracy of Capacity Spectrum Method (요구곡선 산정방법에 따른 능력스펙트럼법의 유효성 평가 및 비교)

  • Kim, Hong-Jin;Min, Kyung-Won;Park, Min-Kyu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.33-42
    • /
    • 2004
  • While transforming the inelastic system into the equivalent elastic one gives an advantage of simpler analysis, the actual inelastic behavior of the system is hardly modeled in the capacity spectrum method (CSM). Therefore, the accuracy of CSM depends on the precise estimation of equivalent period and damping ratio as well as the modification of the elastic response spectrum and the corresponding demand spectrum. In this paper, the effect of demand spectrums on the accuracy of CSM is evaluated. First, the response reduction factors provided in ATC-40 and Euro Code are evaluated. Numerical analysis results indicated that the acceleration responses obtained using the factor of Euro Code are closer to the actual response than those obtained using the factors of ATC-40. Next, the accuracy of CSM is evaluated constructing the demand spectrum using the absolute acceleration responses and pseudo acceleration responses. The results obtained using the absolute acceleration responses were found to be generally larger than those obtained using the pseudo ones. Since CSM often underestimates the response, the use of absolute acceleration response gives the response relatively closer to the exact ones. However, the difference becomes negligible as the hardening ratio and the yield strength ratio become larger.

Performance Analysis and Evaluation of Mean Value-based Power Allocation in Spectrum Sharing Systems with Interference from the Primary Transmitter (주파수 공유 시스템에서 일차 사용자에 의한 간섭이 존재할 때 채널 평균값 기반 전력 할당 기법의 성능 분석 및 평가)

  • Lim, Sung-Mook;Hong, Dae-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.8
    • /
    • pp.77-83
    • /
    • 2012
  • In this paper, when interference caused by the primary user exists, the capacity performance of the mean value-based power allocation scheme is analyzed and evaluated under the outdated channel environment in spectrum sharing systems. When interference due to the primary transmitter affects the secondary receiver, we derive the upper bound of the ergodic capacity of the mean value-based power allocation scheme in a closed form. Furthermore, based on that, we investigate how interference due to the primary transmitter degrades the ergodic capacity of the secondary user. In simulation results, we show the performance degradation of the secondary user due to interference caused by the primary user. In addition, we show that the region where the mean value-based power allocation scheme outperforms the outdated channel information-based power allocation scheme is reduced as interference by the primary user increases.

An Evaluation of Seismic Performance for Existing School Building Using Capacity Spectrum Method (성능스펙트럼법을 이용한 기존 학교 건축물의 내진성능평가 및 보강효과 검증)

  • Jang, Jeong-Hyun;Hwang, Ji-Hoon;Yang, Kyeong-Seok;Takashi, Kamiya;Choi, Jae-Hyouk
    • Journal of Advanced Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.11-18
    • /
    • 2012
  • Large scale earthquake was occurred in different parts of the world like Japan (in 1995), Republic of Pakistan (2005), in China (2008) etc and enormous structures were damaged. As a result of collapse of school buildings structures numerous students are died and it had a big impact on the international community. Therefore, the interest of preparing the seismic resistant school building structures in our country is increases as school building are used as emergency shelter for local residents. But the current standard of seismic design ratio of 3.7% is applied for school building in Korea which is only significant earthquake damage is expected. In order to overcome the current situation, seismic performance evaluation is carried out for the existing school building and an accurate and appropriate seismic retrofit is required based on performance evaluation to upgrade the existing school buildings. In this paper, nonlinear analysis on existing school buildings for ATC-40(Applied Technology Council, ATC) and FEMA-356(Federal Emergency Management Agency, FEMA) are carried out using the capacity spectrum method to evaluate seismic performance and to determine the need for retrofitting. In addition, after reinforcement to enhance the seismic performance is applied the seismic performance evaluation is carried out to verify the effectiveness of seismic retrofit.

Calculation of Spectral Efficiency for Estimating Spectrum Requirements of IMT-Advanced in Korean Mobile Communication Environments

  • Chung, Woo-Ghee;Lim, Eun-Taek;Yook, Jong-Gwan;Park, Han-Kyu
    • ETRI Journal
    • /
    • v.29 no.2
    • /
    • pp.153-161
    • /
    • 2007
  • In this paper, we analyze the algorithm of the methodology developed by ITU for the calculation of spectrum requirements of IMT-Advanced. We propose an approach to estimate user density using traffic statistics, and to estimate spectrum efficiencies using carrier-to-interference ratio distribution and capacity theory as well as experimental data under Korean mobile communication environments. We calculate the IMT-Advanced spectrum requirements based on the user density and spectral efficiencies acquired from the new method. In the case of spectral efficiency using higher modulation and coding schemes, the spectrum requirement of IMT-Advanced is approximately 2700 MHz. When applying a $2{\times}2$ multiple-input multiple-output (MIMO) antenna system, it is approximately 1500 MHz; when applying a $4{\times}4$ MIMO antenna system, it is approximately 1050 MHz. Considering that the development of new technology will increase spectrum efficiency in the future, the spectrum requirement of IMT-Advanced in the Korean mobile communication environment is expected to be approximately 1 GHz bandwidth.

  • PDF

Evaluation of Capacity Spectrum Methods for Seismic Fragility Analysis of Bridges (교량의 지진 취약도 해석 시 사용되는 성능 스펙트럼 기법의 평가)

  • Kim, Sang-Hoon;Yi, Jin-Hak;Kim, Ho-Kyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.67-76
    • /
    • 2004
  • This study presents the evaluation of CSM(Capacity Spectrum Method, ATC-40) in developing fragility curves for a sample concrete bridge. The CSM is originally developed as one of the simplified procedures for building structures, while this study adopts the CSM to develop fragility curves of bridge structures. Four(4) different approaches are demonstrated and the fragility curves developed are compared those by the nonlinear time history analysis. Fragility curves in this study are represented by lognormal distribution functions with two parameters and developed as a function of PGA. The sixty(60) ground acceleration time histories for the Los Angeles area developed for the Federal Emergency Management Agency (FEMA) SAC(SEAOC-ATC-CUREe) steel project are used for the bridge analysis. The comparison of fragility curves by the CSM with those by the time history analysis indicates that the agreement is excellent for one of the methods investigated in this study. In this respect. it is recommended that the demand spectrum might be improved according to the guidelines suggested in this study. However, this observation might not always apply, depending on the details of specific bridge characteristic

Capacity of Spectrum Sharing Cognitive Radio with MRC Diversity under Delay Quality-of-Service Constraints in Nakagami Fading Environments

  • Zhang, Ping;Xu, Ding;Feng, Zhiyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.4
    • /
    • pp.632-650
    • /
    • 2013
  • The paper considers a spectrum sharing cognitive radio (CR) network coexisting with a primary network under the average interference power constraint. In particular, the secondary user (SU) is assumed to carry delay-sensitive services and thus shall satisfy a given delay quality-of-service (QoS) constraint. The secondary receiver is also assumed to be equipped with multiple antennas to perform maximal ratio combining (MRC) to enhance SU performance. We investigate the effective capacity of the SU with MRC diversity under aforementioned constraints in Nakagami fading environments. Particularly, we derive the optimal power allocation to achieve the maximum effective capacity of the SU, and further derive the effective capacity in closed-form. In addition, we further obtain the closed-form expressions for the effective capacities under three widely used power and rate adaptive transmission schemes, namely, optimal simultaneous power and rate adaptation (opra), truncated channel inversion with fixed rate (tifr) and channel inversion with fixed rate without truncation (cifr). Numerical results supported by simulations are presented to consolidate our studies. The impacts on the effective capacity of various system parameters such as the number of antennas, the average interference power constraint and the delay QoS constraint are investigated in detail. It is shown that MRC diversity can significantly improve the effective capacity of the SU especially for cifr transmission scheme.

Changes in Properties of Tropical Kapok Fibers by the Pretreatments (열대산 케이폭 섬유의 전처리에 따른 특성 변화)

  • Shin, Soo-Jeong;Jung, Woong-Ki;Sung, Yong Joo;Lee, Joon-Woo;Kim, Se-Bin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.1
    • /
    • pp.52-58
    • /
    • 2013
  • The effets of the pretreatments of tropical kapok fibers were evaluated in this study in terms of water sorption capacity and oil sorption capacity. The alkali treatments with NaOH resulted in the reduction of lignin, oil and hemicellulose, which were detected with FT-IR spectrum. The reduction of the lyphophilic components such as fat on kapok fiber by the ozone treatments were also measured with FT-IR spectrum. The oil sorption capacity of kapok fiber was decreased by the alkali treatments and the ozone treatments, while the water sorption capacity was increased. The liquid sorption capacity were greatly affected by the mechanical cutting of kapok fiber which exposed the big lumen of kapok fiber. The hydrophilic property of kapok fiber could be controlled by the pretreatments, which would increase the applicability of kapok fiber for preparation of various functional paper products.

Investigation of shear effects on the capacity and demand estimation of RC buildings

  • Palanci, Mehmet;Kalkan, Ali;Sene, Sevket Murat
    • Structural Engineering and Mechanics
    • /
    • v.60 no.6
    • /
    • pp.1021-1038
    • /
    • 2016
  • Considerable part of reinforced concrete building has suffered from destructive earthquakes in Turkey. This situation makes necessary to determine nonlinear behavior and seismic performance of existing RC buildings. Inelastic response of buildings to static and dynamic actions should be determined by considering both flexural plastic hinges and brittle shear hinges. However, shear capacities of members are generally neglected due to time saving issues and convergence problems and only flexural response of buildings are considered in performance assessment studies. On the other hand, recent earthquakes showed that the performance of older buildings is mostly controlled by shear capacities of members rather than flexure. Demand estimation is as important as capacity estimation for the reliable performance prediction in existing RC buildings. Demand estimation methods based on strength reduction factor (R), ductility (${\mu}$), and period (T) parameters ($R-{\mu}-T$) and damping dependent demand formulations are widely discussed and studied by various researchers. Adopted form of $R-{\mu}-T$ based demand estimation method presented in Eurocode 8 and Turkish Earthquake Code-2007 and damping based Capacity Spectrum Method presented in ATC-40 document are the typical examples of these two different approaches. In this study, eight different existing RC buildings, constructed before and after Turkish Earthquake Code-1998, are selected. Capacity curves of selected buildings are obtained with and without considering the brittle shear capacities of members. Seismic drift demands occurred in buildings are determined by using both $R-{\mu}-T$ and damping based estimation methods. Results have shown that not only capacity estimation methods but also demand estimation approaches affect the performance of buildings notably. It is concluded that including or excluding the shear capacity of members in nonlinear modeling of existing buildings significantly affects the strength and deformation capacities and hence the performance of buildings.

Performance of Energy Detection Spectrum Sensing with Delay Diversity for Cognitive Radio System

  • Kim, Eun-Cheol;Koo, Sung-Wan;Kim, Jin-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.4
    • /
    • pp.194-201
    • /
    • 2009
  • In this paper, a new spectrum sensing method based on energy detection is proposed and analyzed in a cognitive radio(CR) system. We employ a delay diversity receiver for sensing the primary user's spectrum with reasonable cost and complexity. Conventional CR with the receiver equipping multiple antennas requires additional hardware and space for installing multiple antennas in accordance with increase in the number of antennas. If the number of antennas increases, detection probability as well as hardware complexity and cost rise. Then, it is difficult to make a primary user detector practically. Therefore, we adopt a delay diversity receiver for solving problems of the conventional spectrum detector utilizing multiple antennas. We derive analytical expressions for the spectrum sensing performance of the proposed system. From the simulation results, it is demonstrated that the primary user detector with the delay diversity receiver has almost half the complexity and shows similar or improved performance as compared with that employing multiple antennas. Therefore, the proposed spectrum sensing structure can be a practical solution for enhancing the detection capacity in CR system operations. The results of this paper can be applied to legacy CR systems with simple modifications.

Improved Convolutional Neural Network Based Cooperative Spectrum Sensing For Cognitive Radio

  • Uppala, Appala Raju;Narasimhulu C, Venkata;Prasad K, Satya
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.6
    • /
    • pp.2128-2147
    • /
    • 2021
  • Cognitive radio systems are being implemented recently to tackle spectrum underutilization problems and aid efficient data traffic. Spectrum sensing is the crucial step in cognitive applications in which cognitive user detects the presence of primary user (PU) in a particular channel thereby switching to another channel for continuous transmission. In cognitive radio systems, the capacity to precisely identify the primary user's signal is essential to secondary user so as to use idle licensed spectrum. Based on the inherent capability, a new spectrum sensing technique is proposed in this paper to identify all types of primary user signals in a cognitive radio condition. Hence, a spectrum sensing algorithm using improved convolutional neural network and long short-term memory (CNN-LSTM) is presented. The principle used in our approach is simulated annealing that discovers reasonable number of neurons for each layer of a completely associated deep neural network to tackle the streamlining issue. The probability of detection is considered as the determining parameter to find the efficiency of the proposed algorithm. Experiments are carried under different signal to noise ratio to indicate better performance of the proposed algorithm. The PU signal will have an associated modulation format and hence identifying the presence of a modulation format itself establishes the presence of PU signal.