• Title/Summary/Keyword: capacitor motor

Search Result 215, Processing Time 0.028 seconds

Single-Phase SRM Driving Method for Power Factor Correction (단상 SRM의 역률 개선을 위한 구동방식)

  • Ahn Jin-Woo;Park Sung-Jun;Son Ick-Jin;Oh Seok-Gyu;Hwang Young-Moon
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.235-238
    • /
    • 2001
  • A novel single-stage power factor corrected (PFC) drive for switched reluctance motor (SRM) is presented to achieve sinusoidal, near unity power factor input current. The proposed PFC SRM drive has no additional active switch. And a single-stage approach, which combines a DC link capacitor used as dc source and a drive used for driving the motor into one power stage, has a simple structure and low cost. The characteristics and validity of the proposed circuit will be discussed in depth through the experimental results.

  • PDF

Power Parameters Analysis and Evaluation using Visualization of Distortion Factor for Motor Drive System (전동기 구동 시스템의 왜형률 가시화에 의한 전력 파라미터 분석 및 평가)

  • 임영철;정영국
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.1
    • /
    • pp.15-22
    • /
    • 1998
  • The goal of this paper is to propose analyzing and evaluating method of power parameters for motor drive system with various experimental graphic screens and numerical results and to develop the proposed system. A developed system is made up 586-PC and DSP board, motor drive system, power parameters analyzing and evaluating software for windows. Power parameters are analyzed using correlation signal processing techniques based on the correlation between voltage and current waveforms. Analysis results are visualized by 3-D current coordinates, and it is compared and evaluated with conventional time/ frequency domain. To verify the validity of the proposed system, capacitor run type single phase induction motor and thyristor speed controller is used for analyzing. Power and harmonic parameters of motor drive system is analyzed and verified, with varying fire angle of thyristor speed controller, and the proposed approach is to confirm validity.

A study on the Energy Efficient C-Dump Converters for Switched Reluctance Motor Drives (SRM구동을 위한 Energy Efficient C-Dump 컨버터에 관한 연구)

  • Choi J.H.;Yoon Y.H.;Song B.S.;Won C.Y.;Kim G.S.;Choi S.W.
    • Proceedings of the KIPE Conference
    • /
    • 2001.12a
    • /
    • pp.105-108
    • /
    • 2001
  • This paper compared a Modified C-dump converter and energy efficient converter topologies, derived from the conventional C-dump converter, for switched reluctance motor (SRM) drives. The proposed topologies overcome the limitations of the conventional C-dump converter, and could reduce the whole cost of the SRM drive. Also, the above converters have simple control requirements; and allow the motor phase current to freewheel during chopping mode. Specially, the voltage ratings of the dump capacitor and some of the switching devices in the proposed an Energy efficient C-dump converter is reduced to the supply voltage ($V_{dc}$) level compared to twice the supply voltage ($2V_{dc}$) in the conventional C-dump converter. Simulation and experimental results of the proposed converters are presented and verified.

  • PDF

Efficient Two-Stage Braking Method of Three-Phase Induction Motor (3상 유도전동기의 효율적인 2단 제동 기법)

  • Lee, Eun-Young;Kim, Yong;Kim, Pill-Soo;Kwon, Soon-Do
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.4
    • /
    • pp.29-36
    • /
    • 1998
  • In this paper, two-stage braking method of 3-phase induction motrois proposed. This brake involves tow stages. The first stage is capacitor self-excitation braking, and the second stage is three-phase magnetic braking. In several applicatons, a low cost and effective brake is required for three-phase induction motor. A mechanical friction brake, typical braking method for induction motor requires external energy sources which is not safe, expensive and requires maintenance. Static and dynamic analyses of the proposed brake scheme are along with analytical result, simulated waveforms and experimental waveforms are compared. The experimental results shows good agreement with the simulated results.

  • PDF

Design of Charge Pump Circuit for Floating Gate Power Supply of Intelligent Power Module (Intelligent Power Module의 플로팅 게이트 전원 공급을 위한 전하 펌프 회로의 설계)

  • Lim, Jeong-Gyu;Chung, Se-Kyo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.135-144
    • /
    • 2008
  • A bootstrap circuit is widely used for the floating gate power supply of Intelligent power module (IPM). A bootstrap circuit is simple and inexpensive. However, the duty cycle and on-time are limited by the requirement to refresh the charge in the bootstrap capacitor. And the value of the bootstrap capacitor should be increased as the switching frequency decreases. A charge pump circuit can be used to overcome the problems. This paper deals with an analysis and design of a charge pump circuit for the floating gate power supply of an IPM. The simulation and experiment are carried out for an induction motor drive system. The results well verifies the validity of the proposed circuit and design method.

The Analysis of Vibration Due to Magnetic Exciting Force in the Brushless DC Motor (다기 전력 시스템 동적 안정도 향상을 위한 분산 제어 기반 PSS 및 TCSC 제어기 설계)

  • Lee, Seung-Cheol;Seo, Jang-Cheol;Moon, Seung-Ill;Park, Jong-Keun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.1
    • /
    • pp.13-19
    • /
    • 2001
  • This paper deals with decentralized control scheme and its application to multi-machine power systems. Decentralized control scheme has several practical advantages, because power system has geographically distributed characteristics. In this paper, decentralized observer-based optimal Power System Stabilizer(PSS) and Thyristor-Controlled Series Capacitor(TCST) controller are designed and tested in WSCC 9 bus system with one TCSC installed. Simulation results show that the proposed decentralized controller has satisfactory performances comparable to the centralized controller. In addition, using modal analysis, this paper shows that the proposed decentralized controller significantly affects only one pair of eigenvalues which have high participation with each generator, while slightly affects other eigenvalues. This result indicates that the application of the decentralized control scheme to enhance power system dynamic stability via excitation control have potential advantages because each low-damped mode occurs dominantly by each decentralized subsystem.

  • PDF

Transient Performance of a Hybrid Electric Vehicle with Multiple Input DC-DC Converter

  • Nashed, Maged N.F.
    • Journal of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.230-238
    • /
    • 2003
  • Electric vehicles (EV) demands for greater acceleration, performance and vehicle range in pure electric vehicles plus mandated requirements to further reduce emissions in hybrid electric vehicles (HEV) increase the appeal for combined on-board energy storage systems and generators. And the power electronics plays an important role in providing an interface between fuel cells (FC) and loads. This paper deals with a multiple input DC-DC power converter devoted to combine the power flowing of multi-source on energy systems. The multi-source is composed of (i) FC system as a prime power demands, (ii) super capacitor banks as energy storage devices for high and intense power demands, (iii) superconducting magnetic energy storage system (SMES), (iv) multiple input DC-DC power converter and (v) a three phase inverter-fed permanent magnet synchronous motor as a drive. In this system, It is used super capacitor banks and superconducting magnetic energy replaces from the battery system. The modeling and transient performance simulation is effective for reducing transient influence caused by sudden charge of effective load. The main purpose of power electronic converters is to convert the DC power output from the fuel cell and other to a suitable AC voltage, which can be connected to electric loads directly (PMSM). The fuel cell and other output is connected to the DC-DC converter, which regulates the DC link voltage.

Performance Analysis of Single-phase SRM Drive System with Single-stage Power Factor Correction (1단구조방식의 PFC회로를 갖는 단상 SRM 구동시스템의 특성해석)

  • Lee, Dong-Hee;Lee, Jin-Kuk;An, Young-Ju;Ahn, Jin-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.328-339
    • /
    • 2006
  • In this paper the characteristic analysis of a single-phase switched reluctance motor (SRM) drive system with power factor correction (PFC) circuit is presented. The SRM is a low cost, simple and has a good high speed performance. The SRM drive with diode rectifier and filter capacitor has a low power factor because of short switch on time of capacitor. A novel switching topologic is presented to improve power factor and reduce torque ripple based on analysis of PFC circuit. Accordingly the SRM drive system with PFC circuit is also presented. Through the numerical analysis of the system, the toque ripple, power factor and efficiency with the change of rotary speed, load torque and capacity of the capacitor are achieved and compared with actual measured value.

Efficiency and Power Factor Improvement of Induction Motor Using Single-Phase Back Rectifier (단상 강압 정류기를 이용한 유도전동기의 효율 및 역률 개선)

  • 문상필;이현우;서기영
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.4
    • /
    • pp.22-29
    • /
    • 2002
  • Usually, much harmonics are included and cause harmonic loss of motor, torque pulsation, electro-magnetic noise and shock etc. by switching function of inverter when drive induction motor variableness inside. It applied partial resonant Buck converter and three phase voltage type SPWM inverter circuit to induction motor driving system in this paper that see to solve such problem. Changed operation condition variously to do input current of circuit that propose sine-wave by unit power factor almost and capacitor supplied bringing back to life voltage by power supply arranging properly assistance diode and electric power switching. Power factor and efficiency improved as that minimize variation of input at power supply voltage polarity reverse by that add voltage reversal function. Also, by using output filter, reduced harmonic of output line to line voltage components, and introduce state space analysis and forecast operation of rectifier. Such all items confirmed validity through simulation and an experiment.

Development of Power Management Strategies for a Compound Hybrid Excavator (복합형 하이브리드 굴삭기를 위한 동력전달계 제어기법 연구)

  • Kim, Hak-Gu;Choi, Jae-Woong;Yoo, Seung-Jin;Yi, Kyoung-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1537-1542
    • /
    • 2011
  • This paper presents the power management strategies for a compound hybrid excavator. The compound hybrid excavator has been replaced the hydraulic swing motor to the electric swing motor. This excavator requires a proper control algorithm to regulate the energy flow between the mechanical coupling and the electric devices. The controller should improve fuel economy and maintain the super capacitor voltage within a proper range. A thermostat controller and ECMS controller are designed such that these objectives can be achieved. The thermostat controller regulates the power of the engine-assist motor on the basis of the super capacitor voltage, and the ECMS controller determines it using the real-time fuel minimization strategy based on the concept of equivalent fuel. Simulation results showed that by using the hybrid excavator, the fuel economy becomes about 20% higher than that obtained using the conventional excavator and that the ECMS controller outperforms the thermostat controller.