• Title/Summary/Keyword: capacitor mismatch

Search Result 38, Processing Time 0.023 seconds

The Study of Method about the Multi-channel Simultaneous Measurement for Measuring the I-V Curve of Photovoltaic Array (태양광 어레이 I-V 곡선 측정을 위한 다채널 동시 측정방법에 관한 연구)

  • Park, Yu-Na;Jang, Gil-Soo;Ko, Suk-Whan;Kang, Gi-Hwan;So, Jung-hun;Jung, Young-Seok;Ju, Young-Chul;Hwang, Hye-Mi;Song, Hyung-Jun
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.4
    • /
    • pp.23-33
    • /
    • 2017
  • A great deal of study for loss reduction of photovoltaic system is conducted currently. It is hard to distinct the fault of photovoltaic system with the naked eye. For that reason, it is essential to repair and maintain the PV system by monitoring the system. The fault of individual modules can cause the huge loss of the entire system because of the mismatch. Therefore, the method of diagnosing the PV array is necessary by measuring the multi-channel arrays simultaneously. In this paper, it is presented the method of measuring I-V curve of multi-channel arrays simultaneously by using the charge and discharge characteristics of capacitor. Generated DC power at PV arrays is charged and discharged at the capacitors in a moment. By measuring the charged voltage and current, it is possible to diagnose of performance of PV arrays.

Compensation of Unbalanced Neutral Voltage for Grid-Connected 3-Phase 3-Level T-type Photovoltaic PCS Using Offset Voltage (오프셋 전압을 이용한 계통 연계형 3상 3레벨 T-type 태양광 PCS의 중성점 전압 불평형 보상)

  • Park, Kwan-Nam;Choy, Ick;Choi, Ju-Yeop;Lee, Young-Kwoun
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.6
    • /
    • pp.1-12
    • /
    • 2017
  • The DC link of Grid-Connected 3-Phase 3-Level T-type Photovoltaic PCS (PV-PCS) consists of two series connected capacitors for using their neutral voltage. The mismatch between two capacitor characteristics and transient states happened in load change cause the imbalance of neutral voltage. As a result, PV-PCS performance is degraded and the system becomes unstable. In this paper, a mathematical model for analyzing the imbalance of neutral voltage is derived and a compensation method using offset voltage is proposed, where offset voltage adjusts the applying time of P-type and N-type small vectors. The validity of the proposed methods is verified by simulation and experiment.

Dual-Band Six-Port Direct Conversion Receiver with I/Q Mismatch Calibration Scheme for Software Defined Radio (Software Defined Radio를 위한 I/Q 부정합 보정 기능을 갖는 이중 대역 Six-Port 직접변환 수신기)

  • Moon, Seong-Mo;Park, Dong-Hoon;Yu, Jong-Won;Lee, Moon-Que
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.651-659
    • /
    • 2010
  • In this paper, a new six-port direct conversion receiver for high-speed multi-band multi-mode wireless communication system such as software defined radio(SDR) is proposed. The designed receiver is composed of two CMOS four-port BPSK receivers and a dual-band one-stage polyphase filter for quadrature LO signal generation. The four-port BPSK receiver, implemented in 0.18 ${\mu}m$ CMOS technology for the first time in microwave-band, is composed of two active combiners, an active balun, two power detector, and an analog decoder. The proposed polyphase filter adopt type-I architecture, one-stage for reduction of the local oscillator power loss, and LC resonance structure instead of using capacitor for dual-band operation. In order to extent the operation RF bandwidth of the proposed six-port receiver, we include I/Q phase and amplitude calibration scheme in the six-port junction and the power detector. The calibration range of the phase and amplitude mismatch in the proposed calibration scheme is 8 degree and 14 dB, respectively. The validity of the designed six-port receiver is successfully demonstrated by modulating M-QAM, and M-PSK signal with 40 Msps in the two-band of 900 MHz and 2.4 GHz.

A3V 10b 33 MHz Low Power CMOS A/D Converter for HDTV Applications (HDTV 응용을 위한 3V 10b 33MHz 저전력 CMOS A/D 변환기)

  • Lee, Kang-Jin;Lee, Seung-Hoon
    • Journal of IKEEE
    • /
    • v.2 no.2 s.3
    • /
    • pp.278-284
    • /
    • 1998
  • This paper describes a l0b CMOS A/D converter (ADC) for HDTV applications. The proposed ADC adopts a typical multi-step pipelined architecture. The proposed circuit design techniques are as fo1lows: A selective channel-length adjustment technique for a bias circuit minimizes the mismatch of the bias current due to the short channel effect by supply voltage variations. A power reduction technique for a high-speed two-stage operational amplifier decreases the power consumption of amplifiers with wide bandwidths by turning on and off bias currents in the suggested sequence. A typical capacitor scaling technique optimizes the chip area and power dissipation of the ADC. The proposed ADC is designed and fabricated in s 0.8 um double-poly double-metal n-well CMOS technology. The measured differential and integral nonlinearities of the prototype ADC show less than ${\pm}0.6LSB\;and\;{\pm}2.0LSB$, respectively. The typical ADC power consumption is 119 mW at 3 V with a 40 MHz sampling rate, and 320 mW at 5 V with a 50 MHz sampling rate.

  • PDF

An Area-Efficient DC-DC Converter with Poly-Si TFT for System-On-Glass (System-On-Glass를 위한 Poly-Si TFT 소 면적 DC-DC 변환회로)

  • Lee Kyun-Lyeol;Kim Dae-June;Yoo Changsik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.2 s.332
    • /
    • pp.1-8
    • /
    • 2005
  • An area-efficient DC-DC voltage up-converter in a poly-Si TFT technology for system-on-glass is described which provides low-ripple output. The voltage up-converter is composed of charge-pumping circuit, comparator with threshold voltage mismatch compensation, oscillator, buffer, and delay circuit for multi-phase clock generation. The low ripple output is obtained by multi-phase clocking without increasing neither clock frequency nor filtering capacitor The measurement results have shown that the ripple on the output voltage with 4-phase clocking is 123mV, while Dickson and conventional cross-coupled charge pump has 590mV and 215mV voltage ripple, respectively, for $Rout=100k\Omega$, Cout-100pF, and fclk=1MHz. The filtering capacitor required for 50mV ripple voltage is 1029pF and 575pF for Dickson and conventional cross-coupled structure, for Iout=100uA, and fclk=1MHz, while the proposed multi-phase clocking DC-DC converter with 4-phase and 6-phase clocking requires only 290pF and 157pF, respectively. The efficiency of conventional and the multi-phase clocking DC-DC converter with 4-phase clocking is $65.7\%\;and\;65.3\%$, respectively, while Dickson charge pump has $59\%$ efficiency.

Direct Imaging of Polarization-induced Charge Distribution and Domain Switching using TEM

  • O, Sang-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.99-99
    • /
    • 2013
  • In this talk, I will present two research works in progress, which are: i) mapping of piezoelectric polarization and associated charge density distribution in the heteroepitaxial InGaN/GaN multi-quantum well (MQW) structure of a light emitting diode (LED) by using inline electron holography and ii) in-situ observation of the polarization switching process of an ferroelectric Pb(Zr1-x,Tix)O3 (PZT) thin film capacitor under an applied electric field in transmission electron microscope (TEM). In the first part, I will show that strain as well as total charge density distributions can be mapped quantitatively across all the functional layers constituting a LED, including n-type GaN, InGaN/GaN MQWs, and p-type GaN with sub-nm spatial resolution (~0.8 nm) by using inline electron holography. The experimentally obtained strain maps were verified by comparison with finite element method simulations and confirmed that not only InGaN QWs (2.5 nm in thickness) but also GaN QBs (10 nm in thickness) in the MQW structure are strained complementary to accommodate the lattice misfit strain. Because of this complementary strain of GaN QBs, the strain gradient and also (piezoelectric) polarization gradient across the MQW changes more steeply than expected, resulting in more polarization charge density at the MQW interfaces than the typically expected value from the spontaneous polarization mismatch alone. By quantitative and comparative analysis of the total charge density map with the polarization charge map, we can clarify what extent of the polarization charges are compensated by the electrons supplied from the n-doped GaN QBs. Comparison with the simulated energy band diagrams with various screening parameters show that only 60% of the net polarization charges are compensated by the electrons from the GaN QBs, which results in the internal field of ~2.0 MV cm-1 across each pair of GaN/InGaN of the MQW structure. In the second part of my talk, I will present in-situ observations of the polarization switching process of a planar Ni/PZT/SrRuO3 capacitor using TEM. We observed the preferential, but asymmetric, nucleation and forward growth of switched c-domains at the PZT/electrode interfaces arising from the built-in electric field beneath each interface. The subsequent sideways growth was inhibited by the depolarization field due to the imperfect charge compensation at the counter electrode and preexisting a-domain walls, leading to asymmetric switching. It was found that the preexisting a-domains split into fine a- and c-domains constituting a $90^{\circ}$ stripe domain pattern during the $180^{\circ}$ polarization switching process, revealing that these domains also actively participated in the out-of-plane polarization switching. The real-time observations uncovered the origin of the switching asymmetry and further clarified the importance of charged domain walls and the interfaces with electrodes in the ferroelectric switching processes.

  • PDF

A $2.1{\sim}2.5\;GHz$ variable gain LNA with a shunt feed-back (병렬 피드백을 사용하여 $2.1{\sim}2.5\;GHz$ 대역에서 이득 제어가 가능한 저잡음 증폭기의 설계)

  • Hwang, Yong-Seok;Yoo, Hyung-Joun
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.7 s.361
    • /
    • pp.54-61
    • /
    • 2007
  • A variable gain low noise amplifier (VG-LNA) implemented in TSMC 0.18 um process is presented. This VG-LNA is designed of two stage amplifier, and its gain is controlled by the shunt feedback loop composed of a gain control transistor (GCT) and a coupling capacitor in second stage. The channel resistance of GCT in the shunt feedback loop influences the input and output stages of a second stage by the Miller effect. Total gain of the proposed VG-LNA is changed by two factors, the load impedance reduction and the interstage mismatch by controlling the channel resistance of the GCT. Consequently, by adding a shunt feedback with a gain control transistor, this proposed VG-LNA achieves both wide gain tuning range of 37 dB and continuous gain control simultaneously.

Investigation on the Nonideality of 12-Bit Sigma-Delta Modulator with a Signal Bandwidth of 1 MHz (1MHz 신호 대역폭출 갖는 12-비트 Sigma-Delta 변조기의 비이상성에 대한 조사)

  • 최경진;조성익;신홍규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.11A
    • /
    • pp.1812-1819
    • /
    • 2001
  • In this paper, it investigated the permitted limit of the analog nonideality for the SOSOC Σ-Δ modulator design which is satisfied with 1 [MHz] signal bandwidth and 12-bit resolution in the OSR=25. Firstly, it get the SOSOC Σ-Δ modulator model and gain coefficient which is suitable in low voltage for the Σ-Δ modulator design which is satisfied with the specification in the supply voltage 3.3 [Vl. And it provided the performance prediction of the Σ-Δ modulator and the permitted limit of the nonideality by adding the performance degradation facts of the Σ-Δ modulator such as the finite gain of the amplifier, the SR, the closed-loop pole, the switch ON resistance and the capacitor mismatch to the ideal Σ-Δ modulator model. When designed the Σ-Δ modulator which is satisfied with the specification by the base above, it will be able to predict the performance of the Σ-Δ modulator and the guide for the specification of the circuit which composes the Σ-Δ modulator.

  • PDF

A Single-Ended Transmitter with Variable Parallel Termination (가변 병렬 터미네이션을 가진 단일 출력 송신단)

  • Kim, Sang-Hun;Uh, Ji-Hun;Jang, Young-Chan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.490-492
    • /
    • 2010
  • A swing level controlled voltage-mode transmitter is proposed to support a stub series-terminated logic channel with center-tapped termination. This transmitter provides a swing level control to support the diagnostic mode and improve the signal integrity in the absence of the destination termination. By using the variable parallel termination, the proposed transmitter maintains the constant output impedance of the source termination while the swing level is controlled. Also, the series termination using an external resistor is used to reduce the impedance mismatch effect due to the parasitic components of the capacitor and inductor. To verify the proposed transmitter, the voltage-mode driver, which provides eight swing levels with the constant output impedance of about $50{\Omega}$, was implemented using a 70nm 1-poly 3-metal DRAM process with a 1.5V supply. The jitter reduction of 54% was measured with the swing level controlled voltage-mode driver in the absence of the destination termination at 1.6-Gb/s.

  • PDF

A 10b 100 MSample/s $1.4\;mm^2$ 56 mW 0.18 urn CMOS A/D Converter for Low-Power Multimedia Applications (저전력 멀티미디어 응용을 위한 10b 100 MSample/s $1.4\;mm^2$ 56 mW 0.18 um CMOS A/D 변환기)

  • Min Byoung-Han;Park Hee-Won;Chae Hee-Sung;Sa Doo-Hwan;Lee Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.12
    • /
    • pp.53-60
    • /
    • 2005
  • This work proposes a 10b 100 MS/s $1.4\;mm^2$ CMOS ADC for low-power multimedia applications. The proposed two-step pipeline ADC minimizes chip area and power dissipation at the target resolution and sampling rate. The wide-band SHA employs a gate-bootstrapping circuit to handle both single-ended and differential inputs with 1.2 Vp-p at 10b accuracy while the second-stage flash ADC employs open-loop offset sampling techniques to achieve 6b resolution. A 3-D fully symmetrical layout reduces the capacitor and device mismatch of the first-stage MDAC. The low-noise references are integrated on chip with optional off-chip voltage references. The prototype 10b ADC implemented in a 0.18 um CMOS shows the maximum measured DNL and INL of 0.59 LSB and 0.77 LSB, respectively. The ADC demonstrates the SNDR of 54 dB, the SFDR of 62 dB, and the power dissipation of 56 mW at 100 MS/s.