Although there have been several attempts to estimate forest LAI using optical remote sensor data, there are still not enough evidences whether the NDVI is effective to estimate forest LAI, particularly in fully closed canopy situation. In this study, we have conducted a simple correlation analysis between LAI and spectral reflectance at two different settings: 1) laboratory spectral measurements on the multiple-layers of leaf samples and 2) Landsat ETM+ reflectance in the close canopy forest stands with fieldmeasured LAI. In both cases, the correlation coefficients between LAI and spectral reflectance were higher in short-wave infrared (SWIR) and visible wavelength regions. Although the near-IR reflectance showed positive correlations with LAI, the correlations strength is weaker than in SWIR and visible region. The higher correlations were found with the spectral reflectance data measured on the simulated vegetation samples than with the ETM+ reflectance on the actual forests. In addition, there was no significant correlation between the forest.LAI and NDVI, in particular when the LAI values were larger than three. The SWIR reflectance may be important factor to improve the potential of optical remote sensor data to estimate forest LAI in close canopy situation.
Plant water deficiency during drought season causes physiological stress and can be a critical indicator of forest fire vulnerability. In this study, we attempt to analyze the spectral characteristics of water stressed vegetation by using the laboratory measurement on leaf samples and the canopy reflectance spectra extracted from satellite hyperspectral image data. Leaf-level reflectance spectra were measured by varying moisture content using a portable spectro-radiometer. Canopy reflectance spectra of sample forest stands of two primary species (pine and oak) located in central part of the Korean peninsula were extracted from EO-l Hyperion imaging spectrometer data obtained during the drought season in 2001 and the normal precipitation year in 2002. The preliminary analysis on the reflectance spectra shows that the spectral characteristics of leaf samples are not compatible with the ones obtained from canopy level. Although moisture content of vegetation can be influential to the radiant flux reflected from leaf-level, it may not be very straightforward to obtain the spectral characteristics that are directly related to the level of canopy moisture content. Canopy spectra form forest stands can be varied by structural variables (such as LAt, percent coverage, and biomass) other than canopy moisture content.
Assessing health condition of crop in the field is one of core operation in precision fanning. A sensing system was proposed to remotely detect the crop health condition in terms of SP AD readings directly related to chlorophyll contents of crop using a multispectral camera equipped on ground-based platform. Since the image taken by a camera was sensitive to changes in ambient light intensity, it was needed to convert gray scale image data into reflectance, an index to indicate the reflection characteristics of target crop. A reference reflectance panel consisting of four pieces of sub-panels with different reflectance was developed for a dynamic calibration, by which a calibration equation was updated for every crop image captured by the camera. The system performance was evaluated in a field by investigating the relationship between com canopy reflectance and SP AD values. The validation tests revealed that the com canopy reflectance induced from Green band in the multispectral camera had the most significant correlation with SPAD values $(r^2=0.75)$ and NIR band could be used to filter out unwanted non-crop features such as soil background and empty space in a crop canopy. This research confirmed that it was technically feasible to develop a ground-based remote sensing system for assessing crop health condition.
Suzuki, Rikie;Kobayashi, Hideki;Delbart, Nicolas;Hiyama, Tetsuya;Asanuma, Jun
Proceedings of the KSRS Conference
/
2007.10a
/
pp.325-328
/
2007
We discuss the Normalized Difference Vegetation Index (NDVI) of the forest canopy and floor separately based on airborne spectral reflectance measurements and simultaneous airborne land surface images acquired around Yakutsk, Siberia in 2000. The aerial land surface images were visually classified into four forest types: no-green canopy and snow floor (Type-1), green canopy and snow floor (Type-2), no-green canopy and no-snow floor (Type-3), and green canopy and no-snow floor (Type-4). The mean NDVI was calculated for these four types. Although Type-2 had green canopy, the NDVI was rather small (0.17) because of high reflection from the snow cover on the floor. Type-3, which had no green canopy, indicated considerably large NDVI (0.45) due to the greenness of the floor. Type-4 had the largest NDVI (0.75) because of the greenness of both the canopy and floor. These results reveal that the NDVI depends considerably on forest floor greenness and snow cover in addition to canopy greenness.
This study aimed to investigate the canopy growth conditions and the accuracy of phenological stages of paddy rice using ground-based remote sensing data. Plant growth variables including Leaf Area Index (LAI) and canopy reflectance of paddy rice were measured at the experimental fields of Chonnam National University, Gwangju, Republic of Korea during the crop seasons of 2011, 2012, and 2013. LAI values were also determined based on correlations with Vegetation Indices (VIs) obtained from the canopy reflectance. Three phenological stages (tillering, booting, and grain filling) of paddy rice could be identified using VIs and a spatial index (NIR versus red). We found that exponential relationships could be applied between LAI and the VIs of interest. This information, as well as the relationships between LAI and VIs obtained in the present study, could be used to estimate and monitor the relative growth and development of rice canopies during the growing season.
Research and technological advances in the field of remote sensing have greatly enhanced the ability to detect and quantify physical and biological stresses that affect the productivity of agricultural crops. Reflectance in specific visible and near-infrared regions of the electromagnetic spectrum have proved useful in detection of nutrient deficiencies. Especially crop canopy sensors as a ground remote sensing measure the amount of light reflected from nearby surfaces such as leaf tissue or soil and is in contrast to aircraft or satellite platforms that generate photographs or various types of digital images. Multi-spectral vegetation indices derived from crop canopy reflectance in relatively wide wave band can be used to monitor the growth response of plants in relation to environmental factors. The normalized difference vegetation index (NDVI), where NDVI = (NIR-Red)/(NIR+Red), was originally proposed as a means of estimating green biomass. The basis of this relationship is the strong absorption (low reflectance) of red light by chlorophyll and low absorption (high reflectance and transmittance) in the near infrared (NIR) by green leaves. Thereafter many researchers have proposed the other indices for assessing crop vegetation due to confounding soil background effects in the measurement. The green normalized difference vegetation index (GNDVI), where the green band is substituted for the red band in the NDVI equation, was proved to be more useful for assessing canopy variation in green crop biomass related to nitrogen fertility in soils. Consequently ground remote sensing as a non destructive real-time assessment of nitrogen status in plant was thought to be useful tool for site specific crop nitrogen management providing both spatial and temporal information.
Vegetation indices on the basis of optical characteristics of vegetation can represent various conditions such as canopy biomass and physiological activity. Those have been mostly developed with the large-scaled applications of multi-band optical sensors on-board satellites. However, the sensitivity of vegetation indices for detecting vegetation features will be different depending on the spatial scales. Therefore, in this study, the investigation of photochemical reflectance index (PRI), known as one of useful vegetation indices for detecting photosynthetic ability and vegetation stress, under the three spatial scales was conducted using multi-spectral camera installed in unmanned aerial vehicle (UAV),field spectrometer, and leaf reflectometer. In the leaf scale, diurnal PRI had minimum values at different local-time according to the compass direction of leaf face. It meant that each leaf in some moment had the different degree of light use efficiency (LUE). In early growth stage of crop, $PRI_{leaf}$ was higher than $PRI_{stands}$ and $PRI_{canopy}$ because the leaf scale is completely not governed by the vegetation cover fraction.In the stands and canopy scales, PRI showed a large spatial variability unlike normalized difference vegetation index (NDVI). However, the bias for the relationship between $PRI_{stands}$ and $PRI_{canopy}$ is lower than that in $NDVI_{stands}$ and $NDVI_{canopy}$. Our results will help to understand and utilize PRIs observed at different spatial scales.
This study was carried out to develop a real-time grouping system of chlorophyll contents of rice crop canopy for precision agriculture. The system measured reflected light energy of a rice canopy on a paddy field from visual to near-infrared range and analyzed the collected information of chlorophyll contents of rice crop canopy with given position data. The four filters, 560 nm $({\pm}10nm)$, 650 nm $({\pm}25nm)$, 700 nm $({\pm}12nm)$, and 850 nm $({\pm}40nm)$, were used for a multiple regression to estimate the chlorophyll contents of rice crop canopy. Every $0.2m^2$ area of the open field was inspected at a distance of 1 m above the rice canopy. According to the results of verification test, the chlorophyll content grouping by a commerical chlorophyll meter (SPAD) and by the developed system showed 58.7% match for five-stage chlorophyll contents of rice crop canopy grouping and 93.5% for the $five{\pm}1-stage$ grouping. In addition, the results showed 63.0% match for three-stage grouping and 100.0% for the $three{\pm}1-stage$ grouping.
A split-plot designed experiment including four rice varieties and 10 nitrogen levels was conducted in 2003 at the Experimental Farm of Seoul National University, Suwon, Korea. Before heading, hyperspectral canopy reflectance (300-1100nm with 1.55nm step) and nine crop variables such as shoot fresh weight (SFW), leaf area index, leaf dry weight, shoot dry weight, leaf N concentration, shoot N concentration, leaf N density, shoot N density and N nutrition index were measured at 54 and 72 days after transplanting. Grain yield, total number of spikelets, number of filled spikelets and 1000-grain weight were measured at harvest. 14,635 narrow-band NDVIs as combinations of reflectances at wavelength ${\lambda}l\;and\;{\lambda}2$ were correlated to the nine crop variables. One NDVI with the highest correlation coefficient with a given crop variable was selected as the NDVI of the best fit for this crop variable. As expected, models to predict crop variables before heading using the NDVI of the best fit had higher $r^2$(>10\%)$ than those using common broad- band NDVI red or NDVI green. The models with the narrow-band NDVI of the best fit overcame broad- band NDVI saturation at high LAI values as frequently reported. Models using NDVIs of the best fit at booting showed higher predictive capacity for yield and yield component than models using crop variables.
Ground-based remote sensing can be used as one of the non-destructive, fast, and real-time diagnostic tools for predicting yield, biomass, and nitrogen stress during growing season. The objectives of this study were: 1) to assess biomass and nitrogen (N) status of tobacco (Nicotiana tabacum L.) plants under N stress using ground-based remote sensors; and 2) to evaluate the feasibility of spectral reflectance indices for estimating an application rate of N and predicting yield of tobacco. Dry weight (DW), N content, and N uptake at the 40th and 50th day after transplanting (DAT) were positively correlated with chlorophyll content and normalized difference vegetation indexes (NDVIs) from all sensors (P<0.01). Especially, Green NDVI (GNDVI) by spectroradiometer and Crop Circle-passive sensors were highly correlated with DW, N content and N uptake. The yield of tobacco was positively correlated with canopy reflectance indices measured at each growth stage (P<0.01). The regression of GNDVI by spectroradiometer on yield showed positively quadratic curve and explained about 90% for the variability of measured yield. The sufficiency index (SI) calculated from data/maximum value of GNDVI at the $40^{th}$ DAT ranged from 0.72 to 1.0 and showed the same positively quadratic regression with N application rate explaining 84% for the variability of N rate. These results suggest that use of reflectance indices measured with ground-based remote sensors may assist in determining application rate of fertilizer N at the critical season and estimating yield in mid-season.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.