• Title/Summary/Keyword: candidate genes

Search Result 602, Processing Time 0.02 seconds

Characterization of Dopamine Receptor D4 Gene Polymorphisms in Horses (말에서 Dopamine Receptor D4 유전자의 변이 특성 분석)

  • Choi, Jae-Young;Choi, Yeonju;Lee, Jongan;Shin, Sang-Min;Yoon, Minjung;Kang, Yong-Jun;Shin, Moon-Cheol;Yoo, Ji-Hyun;Kim, Hyeonah;Cho, In-Cheol;Yang, Byoung-Chul;Kim, Nam-Young
    • Journal of Life Science
    • /
    • v.32 no.1
    • /
    • pp.29-35
    • /
    • 2022
  • This study was conducted to analyze the genetic polymorphisms of dopamine receptor D4 (DRD4) in horse breeds and its association with substrate characteristics in Jeju crossbreds (Jeju Horse × Thoroughbred). Polymorphisms in DRD4 are candidate genes associated with temperament in various mammals, including humans. Single nucleotide polymorphism (SNP) G292A in the exon 3 region of the horse DRD4 has a reported association with curiosity and vigilance in thoroughbreds. Sanger sequencing was used to identify polymorphisms of the mutations in DRD4 in three horse breeds. The SNP frequency in Jeju horses was significantly different from the frequency in other breeds. Character evaluation, conducted in the Jeju crossbreds and scored using a temperament test and contact test, revealed a high correlation between each test. Comparison of the polymorphism in the DRD4 of horses and the results of the character evaluation revealed lower scores for all temperaments in horses carrying allele A. Comparison of the SNP of G292A and blood dopamine levels in Jeju crossbreds showed 2.87 times higher levels for the GA type than for the GG type. This study identified an association between DRD4 polymorphism and various test methods for evaluating horse temperament and levels of neurotransmitters. Further research could validate the use of this gene as a genetic marker for character evaluation.

Comparative proteome profiling in the storage root of sweet potato during curing-mediated wound healing (큐어링 후 저장에 따른 고구마 저장뿌리 단백질체의 비교분석)

  • Ho Yong Shin;Chang Yoon Ji;Ho Soo Kim;Jung-Sung Chung;Sung Hwan Choi;Sang-Soo Kwak;Yun-Hee Kim;Jeung Joo Lee
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.1-10
    • /
    • 2023
  • Sweet potato (Ipomoea batatas L. Lam) is an economically important root crop and a valuable source of nutrients, processed foods, animal feeds, and pigment materials. However, during post-harvest storage, storage roots of sweet potatoes are susceptible to decay caused by various microorganisms and diseases. Post-harvest curing is the most effective means of healing wounds and preventing spoilage by microorganisms during storage. In this study, we aimed to identify proteins involved in the molecular mechanisms related to curing and study proteomic changes during the post-curing storage period. For this purpose, changes in protein spots were analyzed through 2D-electrophoresis after treatment at 33℃ (curing) and 15℃ (control) for three days, followed by a storage period of eight weeks. As a result, we observed 31 differentially expressed protein spots between curing and control groups, among which 15 were identified. Among the identified proteins, the expression level of 'alpha-amylase (spot 1)' increased only after the curing treatment, whereas the expression levels of 'probable aldo-keto reductase 2-like (spot 3)' and 'hypothetical protein CHGG_01724 (spot 4)' increased in both the curing and control groups. However, the expression level of 'sporamin A (spot 10)' decreased in both the curing and control treatments. In the control treatment, the expression level of 'enolase (spot 14)' increased, but the expression levels of 'chain A of actinidin-E-64 complex+ (spot 19)', 'ascorbate peroxidase (spot 22)', and several 'sporamin proteins (spot 20, 21, 23, 24, 27, 29, 30, and 31)' decreased. These results are expected to help identify proteins related to the curing process in sweet potato storage roots, understand the mechanisms related to disease resistance during post-harvest storage, and derive candidate genes to develop new varieties with improved low-temperature storage capabilities in the future.