• Title/Summary/Keyword: candidate division TM7

Search Result 4, Processing Time 0.057 seconds

Structural and Kinetic Characteristics of 1,4-Dioxane-Degrading Bacterial Consortia Containing the Phylum TM7

  • Nam, Ji-Hyun;Ventura, Jey-R S.;Yeom, Ick Tae;Lee, Yongwoo;Jahng, Deokjin
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.11
    • /
    • pp.1951-1964
    • /
    • 2016
  • 1,4-Dioxane-degrading bacterial consortia were enriched from forest soil (FS) and activated sludge (AS) using a defined medium containing 1,4-dioxane as the sole carbon source. These two enrichments cultures appeared to have inducible tetrahydrofuran/dioxane and propane degradation enzymes. According to qPCR results on the 16S rRNA and soluble di-iron monooxygenase genes, the relative abundances of 1,4-dioxane-degrading bacteria to total bacteria in FS and AS were 29.4% and 57.8%, respectively. For FS, the cell growth yields (Y), maximum specific degradation rate ($V_{max}$), and half-saturation concentration ($K_m$) were 0.58 mg-protein/mg-dioxane, $0.037mg-dioxane/mg-protein{\cdot}h$, and 93.9 mg/l, respectively. For AS, Y, $V_{max}$, and $K_m$ were 0.34 mg-protein/mg-dioxane, $0.078mg-dioxane/mg-protein{\cdot}h$, and 181.3 mg/l, respectively. These kinetics data of FS and AS were similar to previously reported values. Based on bacterial community analysis on 16S rRNA gene sequences of the two enrichment cultures, the FS consortium was identified to contain 38.3% of Mycobacterium and 10.6% of Afipia, similar to previously reported literature. Meanwhile, 49.5% of the AS consortium belonged to the candidate division TM7, which has never been reported to be involved in 1,4-dioxane biodegradation. However, recent studies suggested that TM7 bacteria were associated with degradation of non-biodegradable and hazardous materials. Therefore, our results showed that previously unknown 1,4-dioxane-degrading bacteria might play an important role in enriched AS. Although the metabolic capability and ecophysiological significance of the predominant TM7 bacteria in AS enrichment culture remain unclear, our data reveal hidden characteristics of the TM7 phylum and provide a perspective for studying this previously uncultured phylotype.

Bacterial Community Structure of Food Wastewater Treatment System Combined with Rotating Biological Contactor and Tapered Aeration Reactor (회전접촉장치와 점감포기 반응조를 이용한 식품폐수 처리시설의 세균군집 구조)

  • Jeong, Soon-Jae;Nam, Ji-Hyun;Bae, Woo-Keun;Lee, Dong-Hun
    • Korean Journal of Microbiology
    • /
    • v.46 no.2
    • /
    • pp.169-176
    • /
    • 2010
  • A pilot-scale wastewater treatment plant combined with rotating biological contactor and tapered aeration reactors was operated with the wastewater discharged from a food factory for 5 months. The bacterial communities of this plant were investigated by terminal restriction fragment length polymorphism (T-RFLP) and phylogenetic analysis of 16S rRNA genes. In spite of high concentration of nitrogen and phosphorus as well as organic carbon, removal efficiency of chemical oxygen demand, total nitrogen, and total phosphorus was 98%, 93%, and 95%, respectively. Bacterial community at the initial operation stage was clearly distinguished from that of the stable operation stage. The most predominant phylum in the sample of stable stage was Bacteroidetes. Major population of operation period was Haliscomenobacter, Sphaerotilus, and candidate division TM7, which were classified as filamentous bacteria. However, sludge bulking caused by these bacteria was not observed. The population that has a close relationship with Haliscomenobacter increased during the stable operation stage, emerging as the most predominant group. These results suggest that the filamentous bacteria participated in nutrient removal when using rotating biological contactor and tapered aeration reactor.

Drug-likeness and Oral bioavailability for Chemical Compounds of Medicinal Materials Constituting Oryeong-san (오령산 구성약재 성분의 Drug-likeness와 Oral bioavailability)

  • Kim, Sang-Kyun;Lee, Seungho
    • The Korea Journal of Herbology
    • /
    • v.33 no.5
    • /
    • pp.19-37
    • /
    • 2018
  • Objectives : Oryeong-san was composed of Alismatis Rhizoma, Atractylodis Rhizoma Alba, Poria Sclerotium, Polyporus, Cinnamomi Cortex, and known to have hundreds of chemical compounds. The aim of this study was to screen chemical compounds constituting Oryeong-san with the drug-likeness and oral bioavailability from the analysis of their physicochemical properties. Methods : A list of chemical compounds of Oryeong-san was obtained from TM-MC(database of medicinal materials and chemical compounds in Northeast Asian traditional medicine). To remove redundant compounds, the SMILES (Simplified Molecular Input Line Entry System) strings of each compound were identified. All of the physicochemical properties for the compounds were calculated using the DruLiTo(Drug Likeness Tool). Drug-likeness was estimated by QED(Quantitative Estimate of Druglikeness) and OB(Oral bioavailability) was checked based on the Veber's rules. Results : A total of 475 compounds were obtained by eliminating duplication among 544 compounds of 5 medicinal materials. Analysis of the physicochemical properties revealed that the most common values were MW(molecular weight) 200~300 g/mol, ALOGP(octanol-water partition coefficient) 1~2, HBA(number of hydrogen bond acceptors) 0~1, HBD(number of hydrogen bond donors) 0, PSA(polar surface area) 0~50 angstrom, ROTB(number of rotatable bonds) 1, AROM(number of aromatic rings) 0, and ALERT(number of structural alerts) 1. QED had 93% of the values between 0.2 and 0.7, and OB had 90% of the value of TRUE. Conclusions : We in this paper screened the candidate active compounds of Oryeong-san using the QED and Veber's rules. In the future, we will use the screening results to analyze the mechanism of Oryeong-san based on systems pharmacology.

Structure and Characteristics of Bacterial Community on Biofilm of Food Wastewater Treatment System in Winter (식품폐수 처리 공정용 생물막의 겨울철 세균군집 구조와 특성)

  • Lee, Dong-Geun;Yoo, Ki-Hwan;Park, Seong-Joo
    • Journal of Environmental Health Sciences
    • /
    • v.37 no.2
    • /
    • pp.124-132
    • /
    • 2011
  • Biofilm and aeration tank of pilot and full RABC (rotating activated Bacillus contactor) plant were analyzed to characterize and determine bacterial community structure in food wastewater treatment system at winter. Concentration of heterotrophic bacteria and Bacillus group was $10^7$ and $10^5$ CFU/ml, respectively, at biofilm of pilot-plant while others represented $10^6$ and $10^4$ CFU/ml, respectively. Five and eight phyla were detected at biofilm of pilot- and full-plant, respectively, by 16S rDNA sequencing. Biofilm of pilot-plant was dominated by ${\beta}$-Proteobacteria (38.8%), ${\gamma}$-Proteobacteria (22.4%), and Bacteroidetes (12.2%), and the most dominant genus was Zoogloeae genus (22.4%). Candidate division TM7 (12.5%) was only detected at biofilm of full-plant and it was dominated by Bacteroidetes (33.3%), ${\gamma}$-Proteobacteria (29.2%), and ${\beta}$-Proteobacteria (20.8%). Clostridium genus specific primer set enabled to detect the sequences of Clostridium genus. These suggested that anaerobic and aerobic bacteria were coexisted even from the initial period of biofilm formation and ${\beta}$-Proteobacteria, ${\gamma}$-Proteobacteria and Bacteroidetes were major phyla in biofilm of food wastewater treatment system at winter.