• Title/Summary/Keyword: cancer cells

Search Result 7,103, Processing Time 0.031 seconds

Involvement of reactive oxygen species in the anti-cancer activity of fenbendazole, a benzimidazole anthelmintic (Fenbendazole의 항암활성에서 활성산소종의 관련성)

  • Han, Yong;Joo, Hong-Gu
    • Korean Journal of Veterinary Research
    • /
    • v.60 no.2
    • /
    • pp.79-83
    • /
    • 2020
  • Fenbendazole (FBZ) is a benzimidazole anthelmintic that has been widely used in treatments for gastrointestinal parasites including pinworms and roundworms in animals. Recently, some studies demonstrated that FBZ has anti-cancer effects related to disruption of microtubule polymerization. In this study, we investigated whether FBZ has anti-cancer activity in HL-60 cells, a human leukemia cell line, and assessed its relationship with the production of reactive oxygen species (ROS). FBZ treatment at 0.25-1 μM significantly decreased the metabolic activity of HL-60 cells. The mitochondrial membrane potential of FBZ-treated HL-60 cells decreased in a concentration-dependent manner. Apoptosis analysis using annexin V-FITC/propidium iodide staining demonstrated that 1 μM FBZ increased the percentages of cells in apoptosis and necrosis. In addition, Hoechst 33342 staining showed the presence of broken nuclei in HL-60 cells treated with 0.5 and 1 μM FBZ. To investigate the anti-cancer mechanism of FBZ, HL-60 cells were treated with FBZ in the absence or presence of N-acetyl cysteine (NAC), an inhibitor of ROS production. NAC significantly recovered the decreased metabolic activity of HL-60 induced by 0.5 and 1 μM FBZ treatments. This study provides evidence that FBZ has anti-cancer activity in HL-60 cells provided, in part, via ROS production.

Direct treatment on live and cancer cells & process innovation of bio-sensor using atmospheric pressure plasma system with low-temperature arc-free unit

  • Lee, Keun-Ho;Lee, Hae-Ryong;Jun, Seung-Ik;Bahn, Jae-Hoon;Baek, Seung-J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.43-43
    • /
    • 2010
  • We have characterized the parametric and functional properties of live cell and cancer cell according to plasma treatment conditions using Atmospheric Pressure (AP) Plasma with uniquely designed low temperature arc-free unit. AP plasma system showed very highly efficient capabilities of reacting and interfacing directly with live and cancer cells. The parametric results with the types of gases, applied power, applied gap, and process times on cells will be presented in accordance with functional studies of the works. The growth of cancer cells is directly influenced by AP plasma exposure with evaluating plasma conditions in several human cancer cells and understanding how plasma exposure alters molecular signaling pathways. The cells exhibit a slower or faster growth rates compared with untreated cells, depending on the cell types. These results strongly support the conclusion that alterations in one or more of each gene are responsible, at least in part, for plasma-induced apoptosis in cancer cells. In addition, it also will be presented that AP plasma has an important role for the improvement of sensor performance due to excellent interface property between enzyme and metal electrode for bio sensor manufacturing process.

  • PDF

Expression of Intercellular Adhesion Molecule-1 and E-Selectin in Gastric Cancer and Their Clinical Significance

  • Jung, Woo-Chul;Jang, You-Jin;Kim, Jong-Han;Park, Sung-Soo;Park, Seong-Heum;Kim, Seung-Joo;Mok, Young-Jae;Kim, Chong-Suk
    • Journal of Gastric Cancer
    • /
    • v.12 no.3
    • /
    • pp.140-148
    • /
    • 2012
  • Purpose: Among cell adhesion molecules, serum levels of intercellular adhesion molecule-1 and E-selectin are known to be correlated with the metastatic potential of gastric cancer. In the present study, the authors investigated the expression of intercellular adhesion molecule-1 and E-selectin in gastric cancer tissues and cultured gastric cancer cells, and examined their clinical value in gastric cancer. Materials and Methods: The protein was extracted from gastric cancer tissues and cultured gastric cancer cells (MKN-28 and Kato-III) and the expression of intercellular adhesion molecule-1 and E-selectin was examined by western blotting. The clinical significance of intercellular adhesion molecule-1 and E-selectin was explored, using immunohistochemical staining of specimens from 157 gastric cancer patients. Results: In western blot analysis, the expressions of intercellular adhesion molecule-1 in gastric cancer tissues and cultured gastric cancer cells were increased, however, E-selectin in gastric cancer tissues and cells were not increased. Among 157 gastric cancer patients, 79 patients (50%) were intercellular adhesion molecule-1 positive and had larger tumor size, an increased depth of tumor invasion, lymph node metastasis and perineural invasion. The intercellular adhesion molecule-1 positive group showed a higher incidence of tumor recurrence (40.5%), and a poorer 3-year survival than the negative group (54.9 vs. 85.9%, respectively). Conclusions: Intercellular adhesion molecule-1 is overexpressed in gastric cancer tissues and cultured gastric cancer cells, whereas E-selectin is not overexpressed. Increased expression of intercellular adhesion molecule-1 in gastric cancer could be related to the aggressive nature of the tumor, and has a poor prognostic effect on gastric cancer.

Induction of Apoptotic Cell Death by Egg white combined-Chalcanthite on NCI-H460 Human Lung Cancer Cells (난담반의 인체폐암세포주 NCI-H460에 대한 세포자살유도 효능)

  • Choi, Eun-A;Kim, Kyung-Hee;Yoo, Byong-Chul;Yoo, Hwa-Seung
    • Journal of Pharmacopuncture
    • /
    • v.12 no.3
    • /
    • pp.49-59
    • /
    • 2009
  • Background : Anticancer effects of herbal medicine have been reported in various types of cancer, but the systematic approaches to explain molecular mechanism(s) are not established yet. Objective : The purpose of this study is to investigate the apoptotic cell death by Egg White combined Chalcanthite in NCI-H460 human lung cancer cells. Methods : Inhibitory effects were estimated by the MTT-assay. Cancer cells were stained with DAPI and showed condensed and fragmented nuclei. The expression of cleaved caspase-3, bcl-2, and bax was detected by western blotting. To establish a basis of understanding for anti-cancer mechanism, whole proteins have been obtained from NCI-H460 harvested at 24 hrs after the treatment of Egg White combined Chalcanthite, protein expression has been profiled by 2DE-based proteomic approach. Results : NCI-H460 human lung cancer cells were treated by three samples of IS3, IS4 and IS5. IS4 inhibited most effectively the growth of NCI-H460 human lung cancer cells. The expression of cleaved caspase-3 increased in IS4 in a concentration-dependent manner. Various changes of the protein expression have been monitored, and most frequent dysregulation was found in Vimentin, Lamin-A/C. Conclusion : Egg White combined-Chacanthite inhibited the growth of NCI-H460 human lung cancer cells by inducing the apoptotic cell death via caspase-3 activation. Based upon the present findings, the further study will focus on monitoring various cancer survival factors after artificial regulation of the proteins identified, and it would be the basis for the understanding of the Chacabthite anticancer effect(s) at the molecular level.

Cancer Stem Cells and Response to Therapy

  • Tabarestani, Sanaz;Ghafouri-Fard, Soudeh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.12
    • /
    • pp.5947-5954
    • /
    • 2012
  • The cancer stem cell (CSC) model states that cancers are organized in cellular hierarchies, which explains the functional heterogeneity often seen in tumors. Like normal tissue stem cells, CSCs are capable of self-renewal, either by symmetric or asymmetric cell division, and have the exclusive ability to reproduce malignant tumors indefinitely. Current systemic cancer therapies frequently fail to eliminate advanced tumors, which may be due to their inability to effectively target CSC populations. It has been shown that embryonic pathways such as Wnt, Hedgehog, and Notch control self-renewal and cell fate decisions of stem cells and progenitor cells. These are evolutionary conserved pathways, involved in CSC maintenance. Targeting these pathways may be effective in eradicating CSCs and preventing chemotherapy or radiotherapy resistance.

Reversal of Resistance towards Cisplatin by Curcumin in Cervical Cancer Cells

  • Roy, Madhumita;Mukherjee, Sutapa
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.3
    • /
    • pp.1403-1410
    • /
    • 2014
  • Epigenetic regulators like histone deacetylases (1 and 2), and viral onco-proteins (E6/E7) are known to be overexpressed in cervical cancer cells. The present study was designed to investigate the effect of curcumin on HDACs (1 and 2) and HPV E6/E7 in the cervical cancer cell line SiHa and a drug resistant clone $SiHa^R$ (derived from SiHa). It was further intended to investigate whether curcumin could sensitize the cells towards cisplatin induced cell killing by modulation of multi drug resistant proteins like MRP1 and Pgp1. Curcumin inhibited HDACs, HPV expression and differentially increased acetylation and up-regulation of p53 in SiHa and $SiHa^R$, leading to cell cycle arrest at G1-S phase. Up-regulation of pRb, p21, p27 and corresponding inhibition of cyclin D1 and CDK4 were observed. Cisplatin resistance in $SiHa^R$ due to over-expression of MRP1 and Pgp1 was overcome by curcumin. Curcumin also sensitized both the cervical cancer cells towards cisplatin induced cell killing. Inhibition of HDACs and HPVs led to cell cycle arrest at G1/S phase by alteration of cell cycle regulatory proteins. Suppression of MRP1 and Pgp1 by curcumin resulted in sensitization of cervical cancer cells, lowering the chemotherapeutic dose of the drug cisplatin.

Momordica cochinchinensis Seed Extracts Suppress Migration and Invasion of Human Breast Cancer ZR-75-30 Cells Via Down-regulating MMP-2 and MMP-9

  • Zheng, Lei;Zhang, Yan-Min;Zhan, Ying-Zhuan;Liu, Chang-Xiao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.3
    • /
    • pp.1105-1110
    • /
    • 2014
  • Objective: Metastases and invasion are the main reasons for oncotherapy failure. Momordica cochinchinensis (Mu Bie Zi in Chinese) had been used for a variety of purposes, and shown anti-cancer action. In this article, we focused on effects on regulation of breast cancer cell ZR-75-30 metastases and invasion by extracts of Momordica cochinchinensis seeds (ESMCs). Methods: Effect of ESMCs on ZR-75-30 human breast cancer cells proliferation were evaluated by MTT assay and on invasion and migration by wound-healing and matrigel invasion chamber assays. Expression and protease activity of two matrix metalloproteinases (MMPs), MMP-2 and MMP-9, were analyzed by Western blotting and gelatin zymography, respectively. Results: ESMC revealed strong growth inhibitory effects on ZR-75-30 cells, and effectively inhibited ZR-75-30 cell invasion in a dose-dependent manner. Western blot and gelatin zymography analysis showed that ESMC significantly inhibited the expression and secretion of MMP-2 and MMP-9 in ZR-75-30 cells. Conclusions: ESMC has the potential to suppress the migration and invasion of ZR-75-30 cancer cells, and it might prove to of interest in the development of novel inhibitors for breast cancer.

Knockdown of MDR1 Increases the Sensitivity to Adriamycin in Drug Resistant Gastric Cancer Cells

  • Zhu, Chun-Yu;Lv, Yan-Ping;Yan, Deng-Feng;Gao, Fu-Lian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6757-6760
    • /
    • 2013
  • Gastric cancer is one of the most frequently occurring malignancies in the world. Development of multiple drug resistance (MDR) to chemotherapy is known as the major cause of treatment failure for gastric cancer. Multiple drug resistance 1/P-glycoprotein (MDR1/p-gp) contributes to drug resistance via ATP-dependent drug efflux pumps and is overexpressed in many solid tumors including gastric cancer. To investigate the role of MDR1 knockdown on drug resistance reversal, we knocked down MDR1 expression using shRNA in drug resistant gastric cancer cells and examined the consequences with regard to adriamycin (ADR) accumulation and drug-sensitivity. Two shRNAs efficiently inhibited mRNA and protein expression of MDR1 in SGC7901-MDR1 cells. MDR1 knockdown obviously decreased the ADR accumulation in cells and increased the sensitivity to ADR treatment. Together, our results revealed a crucial role of MDR1 in drug resistance and confirmed that MDR1 knockdown could reverse this phenotype in gastric cancer cells.

Resveratrol Anglog 3,5,2',4'-Tetramethoxy-trans-stilbene, Potentiates the Inhibotion of Cell Growth and Induces Apoptosis in Human Cancer Cells

  • Nam, Kyung-Ae;Kim, Sang-hee;Heo, Yeon-Hoi;Lee, Sang-Kook
    • Archives of Pharmacal Research
    • /
    • v.24 no.5
    • /
    • pp.441-445
    • /
    • 2001
  • Resveratrol, a trihydroxystilbene found in grapes and several plants, has been shown to be active in inhibiting multistage carcinogenic process. Using resveratrol as the prototype, we synthesized several analogs and evaluated their growth inhibitory effect using cultured human cancer cells. In the present report we show that one of the resveratrol analogs, 3, 5,2',4'-tetramethoxy-trans-stilbene, potentiated the inhibition of cancer cell growth. Prompted by the strong growth Inhibitory activity of the compound ($IC_{50}$; $0.8{\mu}$ g/ml) compared to resveratrol ($IC_{50}$; $18{\mu}$ug/ml) in cultured human colon cancer cells (Col2), we performed an action mechanism study using the compound. The compound induced the accumulation of cellular DNA contents in the sub-CO phase DNA contents of the cell cycle by in a time-dependent manner. The morphological changes were also consistent with an apoptotic process. This result indicated that the compound induced apoptosis of cancer cells, and may be a candidate for use in the development of potential cancer chemotherapeutic or cancer chemopreventive agents.

  • PDF

Novel Suppressive Effects of Ketotifen on Migration and Invasion of MDA-MB-231 and HT-1080 Cancer Cells

  • Kim, Hyun Ji;Park, Mi Kyung;Kim, Soo Youl;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.22 no.6
    • /
    • pp.540-546
    • /
    • 2014
  • The high mortality rates associated with cancer reflect the metastatic spread of tumor cells from the site of their origin. Metastasis, in fact, is the cause of 90% of cancer deaths. Therefore, considerable effort is being made to inhibit metastasis. In the present study, we screened ketotifen for anti-migratory and anti-invasive activities against MDA-MB-231 breast cancer and HT-1080 fibrosarcoma cancer cells. Cancer cell migration and invasion were measured using multi-well chambers. Additionally, western blots were used to examine the effects of ketotifen on the expressions of CDC42, Rho, Rac, and matrix metalloproteinase 9 (MMP-9). The results showed that ketotifen dose-dependently suppressed the migration and invasion of MDA-MB-231 and HT-1080 cells. Ketotifen also suppressed the expressions of CDC42, Rac, and Rho, which, significantly, are involved in MDA-MB-231 and HT-1080 cancer cell migration. Moreover, ketotifen suppressed the expression and activity of MMP-9, which is involved in degradation of the extracellular matrix leading to invasion. The overall data suggested that ketotifen suppresses the migration and invasion of MDA-MB-231 and HT-1080 cancer cells via inhibition of CDC42, Rac, Rho, and MMP-9 expression.