• Title/Summary/Keyword: camera vibration

Search Result 239, Processing Time 0.025 seconds

Steam Leak Detection Method in a Pipeline Using Histogram Analysis (히스토그램 분석을 이용한 배관 증기누설 검출 방법)

  • Kim, Se-Oh;Jeon, Hyeong-Seop;Son, Ki-Sung;Chae, Gyung-Sun;Park, Jong Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.5
    • /
    • pp.307-313
    • /
    • 2015
  • Leak detection in a pipeline usually involves acoustic emission sensors such as contact type sensors. These contact type sensors pose difficulties for installation and cannot operate in areas having high temperature and radiation. Therefore, recently, many researchers have studied the leak detection phenomenon by using a camera. Leak detection by using a camera has the advantages of long distance monitoring and wide area surveillance. However, the conventional leak detection method by using difference images often mistakes the vibration of a structure for a leak. In this paper, we propose a method for steam leakage detection by using the moving average of difference images and histogram analysis. The proposed method can separate the leakage and the vibration of a structure. The working performance of the proposed method is verified by comparing with experimental results.

Measurement of rivulet movement and thickness on inclined cable using videogrammetry

  • Jing, Haiquan;Xia, Yong;Xu, Youlin;Li, Yongle
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.485-500
    • /
    • 2016
  • Stay cables in some cable-stayed bridges suffer large amplitude vibrations under the simultaneous occurrence of rain and wind. This phenomenon is called rain-wind-induced vibration (RWIV). The upper rivulet oscillating circumferentially on the inclined cable surface plays an important role in this phenomenon. However, its small size and high sensitivity to wind flow make measuring rivulet size and its movement challenging. Moreover, the distribution of the rivulet along the entire cable has not been measured. This paper applies the videogrammetric technique to measure the movement and geometry dimension of the upper rivulet along the entire cable during RWIV. A cable model is tested in an open-jet wind tunnel with artificial rain. RWIV is successfully reproduced. Only one digital video camera is employed and installed on the cable during the experiment. The camera records video clips of the upper rivulet and cable movements. The video clips are then transferred into a series of images, from which the positions of the cable and the upper rivulet at each time instant are identified by image processing. The thickness of the upper rivulet is also estimated. The oscillation amplitude, equilibrium position, and dominant frequency of the rivulet are presented. The relationship between cable and rivulet variations is also investigated. Results demonstrate that this non-contact, non-intrusive measurement method has good resolution and is cost effective.

Tension Measurement of Stay Cables in Consideration with Image Including Vehicle (차량이 포함된 이미지를 고려한 사장재 케이블의 장력 측정 )

  • Sung-Wan Kim;Dong-Uk Park;Jin-Soo Kim;Seung-Su Park;Jae-Bong Park
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.2
    • /
    • pp.58-66
    • /
    • 2023
  • In this study, cable tension was measured using the vibration method, and a vision-based system was applied as a sensor to measure the displacement response of a cable in a non-contact method. In the vision-based system, the camera is installed in a location that considers the target structure and the field of view of the camera. However, it can be difficult to recognize the control points required to measure the displacement response of a structure as the target structure and other structures such as vehicles may be included in the image at the intended installation location. In this study, a distorted image including a vehicle shows inaccurate results in image analysis due to the installation position of the vision-based system. Accordingly, the image including the vehicle was eliminated by calculating the similarity between the two images. To verify the validity of the method of estimating the cable tension of cable-stayed bridges using the proposed method, the vibration method was applied to cable-stayed bridges in service to measure the tension.

Design of the Active Optical Compensation Movements for Image Stabilization of Small Satellite (소형 위성 영상안정화를 위한 능동형 광학 보정장치 설계)

  • Hwang, Jai Hyuk;Yang, Ji Youn;Park, Jean Ho;Jo, Jeong Bin;Kang, Myoung Soo;Bae, Jae Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.5
    • /
    • pp.472-478
    • /
    • 2015
  • This paper describes the design of the active optical compensation movements(at focal plane, secondary mirror) for the image stabilization of a small satellite camera. The movements can correct optical misalignment on-line and directly compensate vibration disturbances in the focal plane. Since the devices are installed inside the space camera, it has an remarkable advantage to deal with the structural deformation of a space camera effectively. In this paper, the requirements of the active optical compensation movements for 1m GSD small satellite camera have been analyzed. Based on the established requirements, the design of the active compensation movements have been conducted. The designed active optical compensation system can control 5 axes movements independently to compensate micro-vibration disturbances in the focal plane and to refocus the optical misaligned satellite camera.

Evaluation on performances of a real-time microscopic and telescopic monitoring system for diagnoses of vibratory bodies

  • Jeon, Min Gyu;Doh, Deog Hee;Kim, Ue Kan;Kim, Kang Ki
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1275-1280
    • /
    • 2014
  • In this study, the performance of a real-time micro telescopic monitoring system is evaluated, in which an artificial neural network is adopted for the diagnoses of vibratory bodies, such as solid piping system or machinery. The structural vibration was measured by a non-contact remote sensing method, in which images of a high-speed high-definition camera were used. The structural vibration data that can be obtained by the PIV (particle image velocimetry) technique were used for training the neural network. The structures of the neural network are dynamically changed and their performances are evaluated for the constructed diagnosis system. Optimized structures of the neural network are proposed for real-time diagnosis for the piping system. It was experimentally verified that the performances of the neural network used for real-time monitoring are influenced by the types of the vibration data, such as minimum, maximum and average values of the vibration data. It concludes that the time-mean values are most appropriate for monitoring the piping system.

Speckle Reduction in Near-field Image of Multimode Fiber with a Piezoelectric Transducer

  • Ha, Woo-Sung;Lee, Se-Jin;Oh, Kyung-Hwan;Jung, Yong-Min;Kim, Jun-Ki
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.126-130
    • /
    • 2008
  • We propose and experimentally demonstrate an effective method to reduce near-field speckle noise at the output of a 50 ${\mu}m$ graded index multimode fiber using a short cylindrical piezoelectric transducer(PZT) vibrating in the radial direction. The fiber was coiled as tightly as possible around the mandrel of the PZT and a periodic stretching effect was caused by the radial oscillations of the actuator. The output of the optical fiber using the He-Ne laser source was intensively observed by a CCD camera. By counting all the pixels corresponding to relative intensity graded into 256 levels in the selected area and by calculating standard deviation and mean value of the intensity, we could measure the speckle contrast and vibration effect quantitatively with reduction ratio of pixels and line profile of the illuminated region. It was clearly observed that the characteristics of the speckle pattern in the vibration-on state were significantly improved over that of the vibration-off state due to time-averaged smoothing.

Uncooled Microbolometer FPA Sensor with Wafer-Level Vacuum Packaging (웨이퍼 레벨 진공 패키징 비냉각형 마이크로볼로미터 열화상 센서 개발)

  • Ahn, Misook;Han, Yong-Hee
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.300-305
    • /
    • 2018
  • The uncooled microbolometer thermal sensor for low cost and mass volume was designed to target the new infrared market that includes smart device, automotive, energy management, and so on. The microbolometer sensor features 80x60 pixels low-resolution format and enables the use of wafer-level vacuum packaging (WLVP) technology. Read-out IC (ROIC) implements infrared signal detection and offset correction for fixed pattern noise (FPN) using an internal digital to analog convertor (DAC) value control function. A reliable WLVP thermal sensor was obtained with the design of lid wafer, the formation of Au80%wtSn20% eutectic solder, outgassing control and wafer to wafer bonding condition. The measurement of thermal conductance enables us to inspect the internal atmosphere condition of WLVP microbolometer sensor. The difference between the measurement value and design one is $3.6{\times}10-9$ [W/K] which indicates that thermal loss is mainly on account of floating legs. The mean time to failure (MTTF) of a WLVP thermal sensor is estimated to be about 10.2 years with a confidence level of 95 %. Reliability tests such as high temperature/low temperature, bump, vibration, etc. were also conducted. Devices were found to work properly after accelerated stress tests. A thermal camera with visible camera was developed. The thermal camera is available for non-contact temperature measurement providing an image that merged the thermal image and the visible image.

Agile and Intelligent Manufacturing System for a Small IT Parts Assembly (초소형 IT 부품 조립을 위한 지능형 민첩 생산시스템)

  • Kim, Won;Kang, Heui-Seok;Cho, Young-June;Jung, Ji-Young;Suh, Il-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.499-506
    • /
    • 2007
  • The tiny camera module used in a modern cellular phone requires precise assembly processes. To meet the requirement of high resolution and functionality, the number of parts used in a camera module becomes larger and larger. As the market grows rapidly, an automatic camera phone assembly process is required. However, diverse production line and short life cycle make it difficult to build an affordable assembly line. To attack this problem, a flexible and expandable lens assembly system is proposed. To save the manufacturing line set-up time, modular concept is adopted. Also, each module is designed to have intelligence to simplify the set-up process. The assembly system is built up on the standard flat-form that includes a vibration free base, air and electric supplies, and electronic controllers, etc. Furthermore, the assembly cell has the capability of handling tiny, thin, or transparent parts which are very difficult to identify without machine vision.

Control of Focal Plane Compensation Device for Image Stabilization of Small Satellite Camera (소형 위성 카메라의 영상안정화를 위한 초점면부 보정장치의 제어)

  • Kang, Myoungsoo;Hwang, Jaihyuk;Bae, Jaesung
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.86-94
    • /
    • 2016
  • In this paper, position control of focal plane compensation device using piezoelectric actuator is conducted. The forcal plane compensation device installed on earth observation satellite camera compensates micro-vibration from reaction wheels. In this study, four experimental models of the open-loop compensation device are derived using MATLAB system identification toolbox in the input range of 0~50Hz. Subsequently, the PID controller for each model is designed and the performance test of each controller is conducted through MATLAB/Simulink. According to frequency response analysis of the closed-loop compensation device system, the PID controller designed for 38~50Hz input range has enough tracking performance for the whole 0~50Hz input range. The maximum output error is about $1{\mu}m$ for the input range. The simulation results has been verified by the experimental method.

Development of A CanSat System Applying High Agility Camera and Remote Control Camera (고기동 안정화 카메라 및 원격제어 셀프카메라를 적용한 캔위성 시스템 개발)

  • Kim, Su-Hyeon;Park, Jae-Hyeon;Kim, Hye-In;Bea, Gi-Sung;Chae, Bong-Geon;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.3
    • /
    • pp.86-96
    • /
    • 2018
  • The High Agility and Remote Control Camera System Can-Satellite ($HA+RC^2S$ CanSat) proposed in this study is a satellite designed by the authors of this work and submitted as an entry in the 2017 CanSat competition in Goheung gun, Jeonnam, Korea. The primary mission of this work is to develop a high agility camera system (HACS) that can obtain high quality images in the air. This objective is achieved by using a tuned mass damper (TMD) to attenuate the residual vibration that occurs immediately after rotating the camera. The secondary objective is to obtain a self-image of CanSat in the air using a remote control self-camera system (RCSS) that is wirelessly controlled using a joystick from a ground station. This paper describes the development process of the $HA+RC^2S$ CanSat, including mission definition, system design, manufacturing, function and performance tests carried out on the ground, and final launch test.