• Title/Summary/Keyword: camera stabilization head

Search Result 3, Processing Time 0.015 seconds

A Study on an Infrared Illumination Stabilization Method in a Head Mounted Eye Tracking System for Sport Applications (착용형 시선 추적 장치의 스포츠 분야 적용을 위한 적외선 조명 변화 최소화에 관한 연구)

  • Lee, Sang-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.3
    • /
    • pp.265-272
    • /
    • 2009
  • In this paper, a simple optical method that uses an infrared(IR) cut filter is proposed to minimize variation of eye image by external infrared(IR) sources in a video based head mounted eye tracking system that is used in the field of sports. For this, the IR cut filter is attached to a head mount of the eye tracking system, and the camera with an IR LED is located between the IR cut filter and eye. In this structure, external IR is blocked by the IR cut filter, and the IR intensity on the eye can be controlled by the IR LED. Therefore, the illumination condition of the camera to capture the eye can be stable without being affected by external IR illuminations. To verify the proposed idea, variation of the eye image and intensity of the IR with/without the IR cut filter is measured under various illumination conditions. The measured data show that the IR cut filter method can block external IR effectively, and complex pupil detection algorithms can be replaced by a simple binarized method.

Real-time Human Pose Estimation using RGB-D images and Deep Learning

  • Rim, Beanbonyka;Sung, Nak-Jun;Ma, Jun;Choi, Yoo-Joo;Hong, Min
    • Journal of Internet Computing and Services
    • /
    • v.21 no.3
    • /
    • pp.113-121
    • /
    • 2020
  • Human Pose Estimation (HPE) which localizes the human body joints becomes a high potential for high-level applications in the field of computer vision. The main challenges of HPE in real-time are occlusion, illumination change and diversity of pose appearance. The single RGB image is fed into HPE framework in order to reduce the computation cost by using depth-independent device such as a common camera, webcam, or phone cam. However, HPE based on the single RGB is not able to solve the above challenges due to inherent characteristics of color or texture. On the other hand, depth information which is fed into HPE framework and detects the human body parts in 3D coordinates can be usefully used to solve the above challenges. However, the depth information-based HPE requires the depth-dependent device which has space constraint and is cost consuming. Especially, the result of depth information-based HPE is less reliable due to the requirement of pose initialization and less stabilization of frame tracking. Therefore, this paper proposes a new method of HPE which is robust in estimating self-occlusion. There are many human parts which can be occluded by other body parts. However, this paper focuses only on head self-occlusion. The new method is a combination of the RGB image-based HPE framework and the depth information-based HPE framework. We evaluated the performance of the proposed method by COCO Object Keypoint Similarity library. By taking an advantage of RGB image-based HPE method and depth information-based HPE method, our HPE method based on RGB-D achieved the mAP of 0.903 and mAR of 0.938. It proved that our method outperforms the RGB-based HPE and the depth-based HPE.