• 제목/요약/키워드: camera series network

검색결과 8건 처리시간 0.027초

Flexible camera series network for deformation measurement of large scale structures

  • Yu, Qifeng;Guan, Banglei;Shang, Yang;Liu, Xiaolin;Li, Zhang
    • Smart Structures and Systems
    • /
    • 제24권5호
    • /
    • pp.587-595
    • /
    • 2019
  • Deformation measurement of large scale structures, such as the ground beds of high-rise buildings, tunnels, bridge, and railways, are important for insuring service quality and safety. The pose-relay videometrics method and displacement-relay videometrics method have already presented to measure the pose of non-intervisible objects and vertical subsidence of unstable areas, respectively. Both methods combine the cameras and cooperative markers to form the camera series networks. Based on these two networks, we propose two novel videometrics methods with closed-loop camera series network for deformation measurement of large scale structures. The closed-loop camera series network offers "closed-loop constraints" for the camera series network: the deformation of the reference points observed by different measurement stations is identical. The closed-loop constraints improve the measurement accuracy using camera series network. Furthermore, multiple closed-loops and the flexible combination of camera series network are introduced to facilitate more complex deformation measurement tasks. Simulated results show that the closed-loop constraints can enhance the measurement accuracy of camera series network effectively.

RGBD 카메라 기반의 Human-Skeleton Keypoints와 2-Stacked Bi-LSTM 모델을 이용한 낙상 탐지 (Fall Detection Based on 2-Stacked Bi-LSTM and Human-Skeleton Keypoints of RGBD Camera)

  • 신병근;김응호;이상우;양재영;김원겸
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권11호
    • /
    • pp.491-500
    • /
    • 2021
  • 본 연구에서는 MS Kinect v2 RGBD 카메라 기반의 Human-Skeleton Keypoints와 2-Stacked Bi-LSTM 모델을 이용하여 낙상 행위를 탐지하는 방법을 제안한다. 기존의 연구는 RGB 영상에서 OpenPose 등의 딥러닝 모델을 이용하여 골격 정보를 추출한 후 LSTM, GRU 등의 순환신경망 모델을 이용해 인식을 수행하였다. 제안한 방법은 카메라로부터 골격정보를 바로 전달 받아 가속도 및 거리의 2개의 시계열 특징을 추출한 후 2-Stacked Bi-LSTM 모델을 이용하여 낙상 행위를 인식하였다. 어깨, 척추, 골반 등 주요 골격을 대상으로 중심관절을 구하고 이 중심관절의 움직임 가속도와 바닥과의 거리를 특징으로 제안하였다. 추출된 특징은 Stacked LSTM, Bi-LSTM 등의 모델과 성능비교를 수행하였고 GRU, LSTM 등의 기존연구에 비해 향상된 검출 성능을 실험을 통해 증명하였다.

A STUDY ON WELD POOL MONITORING IN PULSED LASER EDGE WELDING

  • Lee, Seung-Key;Na, Suck-Joo
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2002년도 Proceedings of the International Welding/Joining Conference-Korea
    • /
    • pp.595-599
    • /
    • 2002
  • Edge welding of thin sheets is very difficult because of the fit-up problem and small weld area In laser welding, joint fit-up and penetration are critical for sound weld quality, which can be monitored by appropriate methods. Among the various monitoring systems, visual monitoring method is attractive because various kinds of weld pool information can be extracted directly. In this study, a vision sensor was adopted for the weld pool monitoring in pulsed Nd:YAG laser edge welding to monitor whether the penetration is enough and the joint fit-up is within the requirement. Pulsed Nd:YAG laser provides a series of periodic laser pulses, while the shape and brightness of the weld pool change temporally even in one pulse duration. The shutter-triggered and non-interlaced CCD camera was used to acquire a temporally changed weld pool image at the moment representing the weld status well. The information for quality monitoring can be extracted from the monitored weld pool image by an image processing algorithm. Weld pool image contains not only the information about the joint fit-up, but the penetration. The information about the joint fit-up can be extracted from the weld pool shape, and that about a penetration from the brightness. Weld pool parameters that represent the characteristics of the weld pool were selected based on the geometrical appearance and brightness profile. In order to achieve accurate prediction of the weld penetration, which is nonlinear model, neural network with the selected weld pool parameters was applied.

  • PDF

이중흐름 3차원 합성곱 신경망 구조를 이용한 효율적인 손 제스처 인식 방법 (An Efficient Hand Gesture Recognition Method using Two-Stream 3D Convolutional Neural Network Structure)

  • 최현종;노대철;김태영
    • 한국차세대컴퓨팅학회논문지
    • /
    • 제14권6호
    • /
    • pp.66-74
    • /
    • 2018
  • 최근 가상환경에서 몰입감을 늘리고 자유로운 상호작용을 제공하기 위한 손 제스처 인식에 대한 연구가 활발히 진행되고 있다. 그러나 기존의 연구는 특화된 센서나 장비를 요구하거나, 낮은 인식률을 보이고 있다. 본 논문은 정적 손 제스처와 동적 손 제스처 인식을 위해 카메라 이외의 별도의 센서나 장비 없이 딥러닝 기술을 사용한 손 제스처 인식 방법을 제안한다. 일련의 손 제스처 영상을 고주파 영상으로 변환한 후 손 제스처 RGB 영상들과 이에 대한 고주파 영상들 각각에 대해 덴스넷 3차원 합성곱 신경망을 통해 학습한다. 6개의 정적 손 제스처와 9개의 동적 손 제스처 인터페이스에 대해 실험한 결과 기존 덴스넷에 비해 4.6%의 성능이 향상된 평균 92.6%의 인식률을 보였다. 본 연구결과를 검증하기 위하여 3D 디펜스 게임을 구현한 결과 평균 34ms로 제스처 인식이 가능하여 가상현실 응용의 실시간 사용자 인터페이스로 사용가능함을 알 수 있었다.

지배주파수도를 이용한 미소 표면 결함 추출을 위한 영상 처리 알고리듬 (A visual inspection algorithm for detecting infinitesimal surface defects by using dominant frequency map)

  • 김상원;권인소
    • 제어로봇시스템학회논문지
    • /
    • 제2권1호
    • /
    • pp.26-34
    • /
    • 1996
  • One of the challenging tasks in visual inspection using CCD camera is to identify surface defects in an image with complex textured backgeound. In microscopic view, the surface of real objects shows regular or random textured patterns. In this paper, we present a visual inspection algorithm to extract abnormal surface defects in an image with textured background. The algorithm uses the space and frequency information at the same time by introducing the Dominant Frequency Map(DFM) which can describe the frequency characteristics of every small local region of an input image. We demonstrate the feasibility and effectiveness of the method through a series of real experiments for a 14" TV CRT mold. The method successfully identifies a variety of infinitesimal defects, whose size is larger than $50\mu\textrm{m}$, of the mold. The experimental results show that the DFM based method is less sensitive to the environmental changes, such as illumination and defocusing, than conventional vision techniques.ques.

  • PDF

TIME-SERIES PHOTOMETRY OF VARIABLE STARS IN THE GLOBULAR CLUSTER NGC 288

  • Lee, Dong-Joo;Koo, Jae-Rim;Hong, Kyeongsoo;Kim, Seung-Lee;Lee, Jae Woo;Lee, Chung-Uk;Jeon, Young-Beom;Kim, Yun-Hak;Lim, Beomdu;Ryu, Yoon-Hyun;Cha, Sang-Mok;Lee, Yongseok;Kim, Dong-Jin;Park, Byeong-Gon;Kim, Chun-Hwey
    • 천문학회지
    • /
    • 제49권6호
    • /
    • pp.295-306
    • /
    • 2016
  • We present the results of BV time-series photometry of the globular cluster NGC 288. Observations were carried out to search for variable stars using the Korea Microlensing Telescope Network (KMTNet) 1.6-m telescopes and a 4k pre-science CCD camera during a test observation from August to December, 2014. We found a new SX Phe star and confirmed twelve previously known variable stars in NGC 288. For the semi-regular variable star V1, we newly determined a period of 37.3 days from light curves spanning 137 days. The light-curve solution of the eclipsing binary V10 indicates that the system is probably a detached system. The pulsation properties of nine SX Phe stars were examined by applying multiple frequency analysis to their light curves. We derived a new Period-Luminosity (P-L) relation, ${\langle}M_V{\rangle}=-2.476({\pm}0.300){\log}P-0.354({\pm}0.385)$, from six SX Phe stars showing the fundamental mode. Additionally, the period ratios of three SX Phe stars that probably have a double-radial mode were investigated; $P_{FO}/P_F=0.779$ for V5, $P_{TO}/P_{FO}=0.685$ for V9, $P_{SO}/P_{FO}=0.811$ for V11. This paper is the first contribution in a series assessing the detections and properties of variable stars in six southern globular clusters with the KMTNet system.

관심 문자열 인식 기술을 이용한 가스계량기 자동 검침 시스템 (Automatic gasometer reading system using selective optical character recognition)

  • 이교혁;김태연;김우주
    • 지능정보연구
    • /
    • 제26권2호
    • /
    • pp.1-25
    • /
    • 2020
  • 본 연구에서는 모바일 기기를 이용하여 획득한 가스계량기 사진을 서버로 전송하고, 이를 분석하여 가스 사용량 및 계량기 기물 번호를 인식함으로써 가스 사용량에 대한 과금을 자동으로 처리할 수 있는 응용 시스템 구조를 제안하고자 한다. 모바일 기기는 일반인들이 사용하는 스마트 폰에 준하는 기기를 사용하였으며, 획득한 이미지는 가스 공급사의 사설 LTE 망을 통해 서버로 전송된다. 서버에서는 전송받은 이미지를 분석하여 가스계량기 기물 번호 및 가스 사용량 정보를 추출하고, 사설 LTE 망을 통해 분석 결과를 모바일 기기로 회신한다. 일반적으로 이미지 내에는 많은 종류의 문자 정보가 포함되어 있으나, 본 연구의 응용분야인 가스계량기 자동 검침과 같이 많은 종류의 문자 정보 중 특정 형태의 문자 정보만이 유용한 분야가 존재한다. 본 연구의 응용분야 적용을 위해서는 가스계량기 사진 내의 많은 문자 정보 중에서 관심 대상인 기물 번호 및 가스 사용량 정보만을 선별적으로 검출하고 인식하는 관심 문자열 인식 기술이 필요하다. 관심 문자열 인식을 위해 CNN (Convolutional Neural Network) 심층 신경망 기반의 객체 검출 기술을 적용하여 이미지 내에서 가스 사용량 및 계량기 기물번호의 영역 정보를 추출하고, 추출된 문자열 영역 각각에 CRNN (Convolutional Recurrent Neural Network) 심층 신경망 기술을 적용하여 문자열 전체를 한 번에 인식하였다. 본 연구에서 제안하는 관심문자열 기술 구조는 총 3개의 심층 신경망으로 구성되어 있다. 첫 번째는 관심 문자열 영역을 검출하는 합성곱신경망이고, 두 번째는 관심 문자열 영역 내의 문자열 인식을 위해 영역 내의 이미지를 세로 열 별로 특징 추출하는 합성곱 신경망이며, 마지막 세 번째는 세로 열 별로 추출된 특징 벡터 나열을 문자열로 변환하는 시계열 분석 신경망이다. 관심 문자열은 12자리 기물번호 및 4 ~ 5 자리 사용량이며, 인식 정확도는 각각 0.960, 0.864 이다. 전체 시스템은 Amazon Web Service 에서 제공하는 클라우드 환경에서 구현하였으며 인텔 제온 E5-2686 v4 CPU 및 Nvidia TESLA V100 GPU를 사용하였다. 1일 70만 건의 검침 요청을 고속 병렬 처리하기 위해 마스터-슬레이브 처리 구조를 채용하였다. 마스터 프로세스는 CPU 에서 구동되며, 모바일 기기로 부터의 검침 요청을 입력 큐에 저장한다. 슬레이브 프로세스는 문자열 인식을 수행하는 심층 신경망으로써, GPU에서 구동된다. 슬레이브 프로세스는 입력 큐에 저장된 이미지를 기물번호 문자열, 기물번호 위치, 사용량 문자열, 사용량 위치 등으로 변환하여 출력 큐에 저장한다. 마스터 프로세스는 출력 큐에 저장된 검침 정보를 모바일 기기로 전달한다.

PVA-ECC단면 이미지의 섬유 분류 및 검출 기법 (Fiber Classification and Detection Technique Proposed for Applying on the PVA-ECC Sectional Image)

  • 김윤용;이방연;김진근
    • 콘크리트학회논문집
    • /
    • 제20권4호
    • /
    • pp.513-522
    • /
    • 2008
  • 섬유복합재료의 우수한 인장 성능은 섬유가 매트릭스의 균열 면에서 가교작용을 함으로써 발현되기 때문에 섬유의 분포 특성이 복합재료의 성능에 결정적인 영향을 미치게 된다. 그러나 PVA 섬유를 보강 섬유로 사용하는 섬유복합재료의 경우 PVA 섬유와 매트릭스 사이의 낮은 명암비와 PVA의 비전도성 특징으로 인하여 섬유의 위치 및 분포특성을 정량적으로 평가히는 방법은 연구가 미흡한 실정이다. 이 연구에서는 PVA 섬유를 보강 섬유로 사용하는 섬유복합재료의 섬유 분포 특성 등을 평가할 때 가장 중요한 과정인 섬유의 검출에 대하여 검출 성능을 향상 시킬 수 있는 알고리즘을 제시하였다. 제안한 알고리즘은 형광 현미경을 사용하여 얻은 섬유 이미지를 유형별로 분류하고, 분류된 분류된 섬유 이미지의 특성에 따라 분수령 알고리즘 (watershed algorithm)과 형태학적 재구성 (morphological reconstruction)을 이용하여 보다 정확히 섬유를 검출하는 과정으로 구성된다. 이 과정에서 섬유 이미지를 총 5가지 유형으로 분류하였으며, 인공신경회로망(ANN)을 분류기로 활용하기 위하여 형상 특성을 나타내는 5가지 특징값 즉, $F_s$, $F_c$, $F_p$, $F_l$$F_{rl}$을 추출하였다. 추출된 특징값에 대한 데이터베이스를 구축하여 ANN을 학습하여 분류기를 구축함으로써 섬유의 유형을 자동으로 분류할 수 있도록 하였다. 또한 5가지 섬유 이미지 유형 중에서 잘못 검출된 섬유이미지를 분수령 알고리즘과 형태학적 재구성을 통하여 섬유를 정확히 검출할 수 있는 기법을 제안하였다.