• Title/Summary/Keyword: camera self-calibration

Search Result 45, Processing Time 0.021 seconds

Evaluation of the Quantitative Practical Use of Smart Phone Stereo Cameras (스마트폰 스테레오 카메라의 정량적 활용성 평가)

  • Park, Kyeong-Sik;Choi, Seok-Keun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.2
    • /
    • pp.93-100
    • /
    • 2012
  • The interest in 3-dimensional information and its practical use are rapidly increasing and thus some goods with stereoscopic views are being released. Mobile phones, unlike other units, are being closely utilized in everyday life and their applications are undoubtedly limitless. In this study, taking photographs with the stereo-camera of mobile phones has been accomplished and also the possibility of getting the quantitative information has been examined. In addition, this study aims to evaluate the quantitative practical use of mobile phones, evaluating the accuracy of the obtained quantitative information. Thus, interior orientation parameters were decided through the calibration of the lens of two cameras equipped with mobile phones. Using the determined interior orientation parameters, the 3-dimensional coordinates on the targets of the test field were calculated and then compared with precisely observed coordinates. Moreover, the performance of the orientation on the arbitrary building resulted in the standard deviation of $X={\pm}0.0674m$, $Y={\pm}0.25319$, and $Z={\pm}0.4983m$. The result also shows that the plot is possible. As a result, smart phones could be utilized for the acquisition of the quantitative information at close range and small measurement in which the high-accuracy on the basis of centimeters is not required.

Applicability Assessment of Disaster Rapid Mapping: Focused on Fusion of Multi-sensing Data Derived from UAVs and Disaster Investigation Vehicle (재난조사 특수차량과 드론의 다중센서 자료융합을 통한 재난 긴급 맵핑의 활용성 평가)

  • Kim, Seongsam;Park, Jesung;Shin, Dongyoon;Yoo, Suhong;Sohn, Hong-Gyoo
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_2
    • /
    • pp.841-850
    • /
    • 2019
  • The purpose of this study is to strengthen the capability of rapid mapping for disaster through improving the positioning accuracy of mapping and fusion of multi-sensing point cloud data derived from Unmanned Aerial Vehicles (UAVs) and disaster investigation vehicle. The positioning accuracy was evaluated for two procedures of drone mapping with Agisoft PhotoScan: 1) general geo-referencing by self-calibration, 2) proposed geo-referencing with optimized camera model by using fixed accurate Interior Orientation Parameters (IOPs) derived from indoor camera calibration test and bundle adjustment. The analysis result of positioning accuracy showed that positioning RMS error was improved 2~3 m to 0.11~0.28 m in horizontal and 2.85 m to 0.45 m in vertical accuracy, respectively. In addition, proposed data fusion approach of multi-sensing point cloud with the constraints of the height showed that the point matching error was greatly reduced under about 0.07 m. Accordingly, our proposed data fusion approach will enable us to generate effectively and timelinessly ortho-imagery and high-resolution three dimensional geographic data for national disaster management in the future.

A Preliminary Study on UAV Photogrammetry for the Hyanho Coast Near the Military Reservation Zone, Eastern Coast of Korea (동해안 군사시설보호구역 주변 향호 연안역을 대상으로 무인항공사진측량에 관한 예비 연구)

  • Kim, Baeck-Oon;Yun, Kong-Hyun;Chang, Tae-Soo;Bahk, Jang-Jun;Kim, Seong-Pil
    • Ocean and Polar Research
    • /
    • v.39 no.2
    • /
    • pp.159-168
    • /
    • 2017
  • To evaluate the accuracy of UAV photogrammetry for Hyangho coast, eastern coast of Korea, we conducted a field experiment wherein UAV photogrammetry test was repeated three times. Since the Haygho coast is located within a military reservation zone, it was necessary to obtain permission to gain access to the beach and to have sensitive aerial photographs showing military facilities inspected and cropped. The standard deviation of the UAV shooting position between the three tests was less than 1 m, but repeatability of footprint on the ground was low due to wind-driven variability of the UAV pose. Self-calibrating bundle adjustment(SCBA) of implementing non-metric camera calibration was failed in one test. In two tests, the vertical error was twice as large as the pixel size except for those areas that were subject to security inspection and cropping. Given the problems that can arise with regard to the repeatability of the shooting area as well as the possibility of failure with regard to SCBA, we strongly recommend that UAV photogrammetry in coastal areas needs to be repeated at least twice.

Soil Deformation Tracking in Model Chamber by Targetless Close-Range Photogrammetry (무타겟 사진측량 기반 모형 토조 내 지반 변위 측정)

  • Lee, Chang No;Oh, Jae Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.555-562
    • /
    • 2019
  • This paper presents soil deformation measurement in model chamber based on photogrammetry. We created an aluminum framed acrylic model chamber with soil inside and applied photogrammetry to measure soil deformation caused by loading tests. The soil consists of 40% black and 60% regular sand to create image contrast in soil images. In preprocessing, the self camera calibration was carried out for IOPs (Interior Orientation Parameters), followed by the space resection to estimate EOPs (Exterior Orientation Parameters) using control points located along the aluminum frame. Image matching was applied to measure the soil displacement. We tested different matching window sizes and the effect of image smoothing. Experimental results showed that 65x65 pixels of window size produced better soil deformation map and the image smoothing was useful to suppress the matching outliers. In conclusion, photogrammetry was able to efficiently generated soil deformation map.

Measurement of Soil Deformation around the Tip of Model Pile by Close-Range Photogrammetry (근접 사진측량에 의한 모형말뚝 선단부 주변의 지반 변형 측정)

  • Lee, Chang No;Oh, Jae Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.2
    • /
    • pp.173-180
    • /
    • 2013
  • In this paper, we studied on measurement of soil deformation around the tip of model pile by close-range photogrammetry. The rigorous bundle adjustment method was utilized to monitor the soil deformation in the laboratory model pile-load test as function of incremental penetration of the pile. Control points were installed on the frame of the laboratory model box case and more than 150 target points were inserted inside the soil around the model pile and on the surface. Four overlapping images including three horizontal and one vertical image were acquired by a non-metric camera for each penetration step. The images were processed to automatically locate the control and target points in the images for the self-calibration and the bundle adjustment. During the bundle adjustment, the refraction index of the acrylic case of the laboratory model was accounted for accurate measurement. The experiment showed the proposed approach enabled the automated photogrammetric monitoring of soil deformation around the tip of model pile.